В четырехугольник можно вписать окружность только тогда, когда суммы его противоположных сторон равны. В равнобедренной трапеции боковые стороны равны. Следовательно, в данной трапеции полусумма оснований равна боковой стороне. (a+b)/2=c
Средняя линии трапеции равна полусумме оснований. Следовательно, в данной трапеции средняя линия равна боковой стороне. m=c
Площадь трапеции равна S=(a+b)h/2 или S=mh. Следовательно, в данной трапеции площадь равна произведению боковой стороны на высоту. S=сh
Биссектрисы углов данной трапеции пересекаются в одной точке.
Радиус вписанной окружности равен половине высоты (центр вписанной окружности равноудален от оснований). h=2r
Задача. В равнобедренной трапеции точка касания вписанной окружности делит боковую сторону на отрезки x и y. Найти площадь трапеции.
Сумма углов, прилежащих боковой стороне трапеции, равна 180. В треугольнике, образованном отрезками биссектрис и боковой стороной, острые углы являются половинами углов, прилежащих боковой стороне трапеции, следовательно их сумма равна 90, треугольник прямоугольный. Высота из прямого угла равна среднему геометрическому отрезков, на которые она делит гипотенузу. Высота в данном случае является радиусом вписанной окружности. r=√(xy)
Рассмотрим треугольник MPK:1)Так как треугольник равнобедренный, следовательно углы при основании равны, а один из углов тупой, следовательно угол KPM равен 120 градусам. Отсюда мы можем найти углы PKM и PMK: (180-120):2 = 60:2=30 градусов.2) Рассмотрим треугольник KHM:Так как MH - высота треугольника KPM, следовательно треугольник KHM прямоугольный.В этом треугольнике известно: угол в 30 градусов и противолежащий катет, равный 14 см. Отсюда мы можем найти основание КМ: (Катет, лежащий против угла в 30 градусов равен половине гипотенузе, КМ - гипотенуза). И так, КМ равно: 2*НМ= 28 см.ответ: основание КМ равно 28 см.
(a+b)/2=c
Средняя линии трапеции равна полусумме оснований. Следовательно, в данной трапеции средняя линия равна боковой стороне.
m=c
Площадь трапеции равна S=(a+b)h/2 или S=mh. Следовательно, в данной трапеции площадь равна произведению боковой стороны на высоту.
S=сh
Биссектрисы углов данной трапеции пересекаются в одной точке.
Радиус вписанной окружности равен половине высоты (центр вписанной окружности равноудален от оснований).
h=2r
-----------------------------------------------------------------------------------------------------------------
Задача. В равнобедренной трапеции точка касания вписанной окружности делит боковую сторону на отрезки x и y. Найти площадь трапеции.
Сумма углов, прилежащих боковой стороне трапеции, равна 180. В треугольнике, образованном отрезками биссектрис и боковой стороной, острые углы являются половинами углов, прилежащих боковой стороне трапеции, следовательно их сумма равна 90, треугольник прямоугольный. Высота из прямого угла равна среднему геометрическому отрезков, на которые она делит гипотенузу. Высота в данном случае является радиусом вписанной окружности.
r=√(xy)
S =ch =(x+y)*2r =2(x+y)√(xy)