Задача на построение циркулем и линейкой обычно подразумевает наличие циркуля и линейки без делений. Пусть ДАН отрезок АВ длиной 6 см.
Из точки начала данного отрезка А проводим прямую АС, образующую угол с данным отрезком. На этой прямой циркулем откладываем 5 РАВНЫХ отрезков ЛЮБОИ длины. Конец q последнего (пятого) отрезка соединяем с конgом B данного нам отрезка.
Затем через точку "h" последнего отрезка проводим прямую, параллельную отрезку qВ.
Точка D пересечения этой прямой с данным нам отрезком АВ и есть точка деления отрезка в отношении 1:4, считая от точки В.
Если надо разделить отрезок в отношении 1:4, начиная от точки А, циркулем замеряем отрезок DB и откладываем его от точки А, получая на отрезке АВ точку Е.
Как ПОСТРОИТЬ прямую, параллельную данной? Один из для нашего случая:
1. Проводим окружность 1 радиуса qh с центром в точке q (конец 5-го отрезка) на прямой АС.
2. Проводим окружность 2 радиуса qh с центром в точке m (точка пересечения окружность 2 с прямой qВ).
3. Проводим окружность 3 радиуса qh с центром в точке h на прямой АС.
4. Через точке h и n (точка пересечения окружностей 2 и 3) проводим прямую, которая и будет параллельна прямой qB, поскольку фигура hqmn - ромб по построению, так как все стороны четырехугольника равны радиусу qh.
Задача на построение циркулем и линейкой обычно подразумевает наличие циркуля и линейки без делений. Пусть ДАН отрезок АВ длиной 6 см.
Из точки начала данного отрезка А проводим прямую АС, образующую угол с данным отрезком. На этой прямой циркулем откладываем 5 РАВНЫХ отрезков ЛЮБОИ длины. Конец q последнего (пятого) отрезка соединяем с конgом B данного нам отрезка.
Затем через точку "h" последнего отрезка проводим прямую, параллельную отрезку qВ.
Точка D пересечения этой прямой с данным нам отрезком АВ и есть точка деления отрезка в отношении 1:4, считая от точки В.
Если надо разделить отрезок в отношении 1:4, начиная от точки А, циркулем замеряем отрезок DB и откладываем его от точки А, получая на отрезке АВ точку Е.
Как ПОСТРОИТЬ прямую, параллельную данной? Один из для нашего случая:
1. Проводим окружность 1 радиуса qh с центром в точке q (конец 5-го отрезка) на прямой АС.
2. Проводим окружность 2 радиуса qh с центром в точке m (точка пересечения окружность 2 с прямой qВ).
3. Проводим окружность 3 радиуса qh с центром в точке h на прямой АС.
4. Через точке h и n (точка пересечения окружностей 2 и 3) проводим прямую, которая и будет параллельна прямой qB, поскольку фигура hqmn - ромб по построению, так как все стороны четырехугольника равны радиусу qh.
Объяснение:
АВС - основание пирамиды
S - вершина
О - середина основания
SO - высота = 9√3
АВ=ВС=АС= 9√3
SA - ?
Найдём длину АО:
АО = 1/2 * АP
где АР - высота треугольника АВС
Найдем площадь треугольника:
S = a²√3/4 = (9√3)²*√3/4 = 243√3 /4 см²
Также площадь треугольника находится через высоту:
S = 1/2 * a * h
Найдём отсюда высоту:
243√3 /4 = 1/2 * 9√3 * h
1/2 * h = 81/4
h = 81/2 см
AO = 1/2 * 81/2 = 81/4 см
По теореме Пифагора:
SA² = AO²+SO²
SA² = (81/4)² + (9√3)²
SA² = 6561/16 + 243
SA² = 10449/16
SA = √10449/4
ответ: √10449/4 см