Две параллельные прямые пересекаются третьей прямой, поэтому выполняются следующие положения: углы 2 и 4 равны как вертикальные, сумма 4 и вертикального угла углу 1 равна 180° как внутренние односторонние, значит сумма углов 1 и 2 равна 180°, угол 1 составляет 5 частей, угол 2 - 4 части, всего 9 частей, тогда 1 часть 180°: 9 = 20°. угол 1 5·20° = 100°, угол 2 - 4·20° = 80°. угол 4 равен 80°(как вертикальный углу 2). угол 3 и угол 4 – смежные, их сумма равна 180°. угол 3 равен 180° - угол 4 = 180° -80° = 100°.
Прямая а может пересекать обе плоскости, если не лежит ни в одной из них (рис. 1) Прямая а может лежать в одной из плоскостей (например, на рис. 2 в плоскости β), тогда другую плоскость она пересекает. Прямая b может не лежать ни в одной из плоскостей, тогда она параллельна каждой. (рис. 3) Прямая b может лежать в одной плоскости (например, на рис. 4 в β), тогда она параллельна другой плоскости. Но пересекать плоскости прямая b не может. Взаимное расположение прямых а и b однозначно определить нельзя. Они могут быть скрещивающимися или пересекаться. Но не могут быть параллельны. 2. Любые три точки, не лежащие на одной прямой, задают единственную плоскость. Пусть точки А, В и С лежат в одной плоскости. АВ⊂α, DC∩α = C, C∉AB ⇒ АВ и CD - скрещивающиеся. К - середина AD, Р - середина СВ. КР = 3 см. Проведем КТ║АВ и ТР║CD. Тогда угол между прямыми КТ и ТР будет равен углу между прямыми АВ и CD. КТ - средняя линия ΔABD ⇒ КТ = АВ/2 = 3 см ТР - средняя линия ΔСBD ⇒ ТР = CD/2 = 3 см ΔКТР равносторонний, значит ∠КТР = 60°, значит и угол между прямыми АВ и CD равен 60°
Объяснение:
Прямая а может пересекать обе плоскости, если не лежит ни в одной из них (рис. 1) Прямая а может лежать в одной из плоскостей (например, на рис. 2 в плоскости β), тогда другую плоскость она пересекает. Прямая b может не лежать ни в одной из плоскостей, тогда она параллельна каждой. (рис. 3) Прямая b может лежать в одной плоскости (например, на рис. 4 в β), тогда она параллельна другой плоскости. Но пересекать плоскости прямая b не может. Взаимное расположение прямых а и b однозначно определить нельзя. Они могут быть скрещивающимися или пересекаться. Но не могут быть параллельны. 2. Любые три точки, не лежащие на одной прямой, задают единственную плоскость. Пусть точки А, В и С лежат в одной плоскости. АВ⊂α, DC∩α = C, C∉AB ⇒ АВ и CD - скрещивающиеся. К - середина AD, Р - середина СВ. КР = 3 см. Проведем КТ║АВ и ТР║CD. Тогда угол между прямыми КТ и ТР будет равен углу между прямыми АВ и CD. КТ - средняя линия ΔABD ⇒ КТ = АВ/2 = 3 см ТР - средняя линия ΔСBD ⇒ ТР = CD/2 = 3 см ΔКТР равносторонний, значит ∠КТР = 60°, значит и угол между прямыми АВ и CD равен 60°