Высота трапеции равна диаметру вписанной окружности: ВН = СК = 7,5 · 2 = 15 см ΔАВН: ∠АНВ = 90°, по теореме Пифагора АН = √(АВ² - ВН²) = √(17² - 15²) = √(289 - 225) = √64 = 8 см ΔАВН = ΔDCK по катету и гипотенузе (АВ = CD по условию, ВН = СК как высоты трапеции), ⇒ DK = AH = 8 см
Если в четырехугольник вписана окружность, то суммы противоположных сторон равны: AD + BC = AB + CD = 17 + 17 = 34 см AD = AH + HK + KD = 8 + HK + 8 = HK + 16 Так как НК = ВС: AD + BC = 34 AD = BC + 16
2BC + 16 = 34 BC = (34 - 16)/2 = 18/2 = 9 см AD = 9 + 16 = 25 см
Диаметр окружности равен стороне описанного квадрата и диагонали вписанного. Поэтому у квадрата №2 диагональ равна стороне квадрата №1, то есть b; поэтому площадь второго квадрата в 2 раза меньше, чем у первого. Бесконечная сумма площадей выглядит так b^2*(1 + 1/2 + 1/4 + ) = 2*b^2; это просто геометрическая прогрессия со знаменателем q = 1/2; Линейные размеры двух последовательных окружностей связаны так же, как и линейные размеры последовательных квадратов (а - почему?), то есть длина первой окружности π*b; второй π*b/√2 и так далее, сумма длин окружностей будет такая π*b(1+ 1/√2 + 1/2 + 1/2√2 + ...) = π*b/(1 - 1/√2) = π*b*√2*(√2 + 1) = π*b*(2 + √2)
ВН = СК = 7,5 · 2 = 15 см
ΔАВН: ∠АНВ = 90°, по теореме Пифагора
АН = √(АВ² - ВН²) = √(17² - 15²) = √(289 - 225) = √64 = 8 см
ΔАВН = ΔDCK по катету и гипотенузе (АВ = CD по условию, ВН = СК как высоты трапеции), ⇒
DK = AH = 8 см
Если в четырехугольник вписана окружность, то суммы противоположных сторон равны:
AD + BC = AB + CD = 17 + 17 = 34 см
AD = AH + HK + KD = 8 + HK + 8 = HK + 16
Так как НК = ВС:
AD + BC = 34
AD = BC + 16
2BC + 16 = 34
BC = (34 - 16)/2 = 18/2 = 9 см
AD = 9 + 16 = 25 см
b^2*(1 + 1/2 + 1/4 + ) = 2*b^2; это просто геометрическая прогрессия со знаменателем q = 1/2;
Линейные размеры двух последовательных окружностей связаны так же, как и линейные размеры последовательных квадратов (а - почему?), то есть длина первой окружности π*b; второй π*b/√2 и так далее, сумма длин окружностей будет такая
π*b(1+ 1/√2 + 1/2 + 1/2√2 + ...) = π*b/(1 - 1/√2) = π*b*√2*(√2 + 1) = π*b*(2 + √2)