Есть формула для нахождения числа диагоналей выпуклого многоугольника. Каждая вершина соединена диагоналями со всеми другими вершинами, кроме двух соседних и, естественно, себя самой. Таким образом,из одной вершины можно провести n − 3 диагонали; перемножим это на число вершин (n -3 ) n Но так как каждая диагональ посчитана дважды ( по разу для каждого конца диагонали) , то получившееся число надо разделить на 2. d=(n² - 3n):2 В данной задаче 9=(n² - 3n):2 n² - 3n -18=0 Решив квадратное уравнение, найдем его корни ( вычислений не даю, каждый сможет решить сам). х₁=6 х₂=-3( не подходит) ответ: 6 сторон.
Диагональ с двумя высотами образует 2 треугольника. Обозначим углы против этих высот за α и β. Тогда sin α = 3/5. а sin β = 2/5. cos α = √(1-9/25) = 4/5 cos β = √(1-4/25) =√21/5. Острый угол параллелограмма равен сумме α и β. Для определения площади параллелограмма надо найти его основание, которое равно 5*cos α - 3 / tg(α+β). tg(α+β) = (tg α+tg β) / (1 - tg α*tg β). tg α = sin α / (1-sin²α) = (3/5) / (√(1-9/25)) = 3 / 4, tg β = (2/5) / (√(1-4/25)) = 2 / √21. tg(α+β) = ((3/4)+(2/√21)) / (1-(3/4)+(2/√21)) = 1,76376. Основание равно 5*(4/5) - 3/1,76376 = 2,29909. Площадь параллелограмма равна: 3*2,29909 = 6,89727.
Каждая вершина соединена диагоналями со всеми другими вершинами, кроме двух соседних и, естественно, себя самой.
Таким образом,из одной вершины можно провести n − 3 диагонали;
перемножим это на число вершин (n -3 ) n
Но так как каждая диагональ посчитана дважды ( по разу для каждого конца диагонали) , то получившееся число надо разделить на 2.
d=(n² - 3n):2
В данной задаче
9=(n² - 3n):2
n² - 3n -18=0
Решив квадратное уравнение, найдем его корни ( вычислений не даю, каждый сможет решить сам).
х₁=6
х₂=-3( не подходит)
ответ: 6 сторон.
Обозначим углы против этих высот за α и β.
Тогда sin α = 3/5. а sin β = 2/5.
cos α = √(1-9/25) = 4/5
cos β = √(1-4/25) =√21/5.
Острый угол параллелограмма равен сумме α и β.
Для определения площади параллелограмма надо найти его основание, которое равно 5*cos α - 3 / tg(α+β).
tg(α+β) = (tg α+tg β) / (1 - tg α*tg β).
tg α = sin α / (1-sin²α) = (3/5) / (√(1-9/25)) = 3 / 4,
tg β = (2/5) / (√(1-4/25)) = 2 / √21.
tg(α+β) = ((3/4)+(2/√21)) / (1-(3/4)+(2/√21)) = 1,76376.
Основание равно 5*(4/5) - 3/1,76376 = 2,29909.
Площадь параллелограмма равна: 3*2,29909 = 6,89727.