Средняя линия равна половине основания, следовательно основания равны 12,18 и 20 соответственно, тогда периметр будет Р=12+18+20=50см ответ 50
опустим из вершины с на ад перпендикуляр: Δаве=Δдск⇒ АЕ=ДК=(17-5)/2=6 ответ 6
∠САД=∠АСВ=28° как внутренние накрестлежащие в Δавс ∠ВАС=АСВ=28° как углы при основании равнобедренногоΔ ∠ВАД=∠СДА∠ВАС+∠АСВ=28+28=56° как углы при основании равнобедренной трапеции ∠АВС=∠ВСД=(360-2*56)/2=(360-112)/2=248/2=124° ответ 59°,59°,124°,124°
пусть ВС =х, тогда АД =х+6 Сред линяя равна МК=(х+х+6)/2, а по условию 7см составим и решим уравнение 2х+6 / 2=7 2х+6=7*2 2х=14-6 х=8/2 х=4, значит вс=4, тогла ад=10 ΔАСД и ΔАСК подобны(т.к СК=1/2СД ∠С общий ∠СКО=∠СДА)⇒СО=1/2СА т.е ОК - средняя линия ΔАСД⇒ ОК=1/2АД=1/2*10=5 МО=МК-ОК=7-5=2 ответ 5 и 2
ΔАВС и КВМ подобны(тк ∠В - общий, КВ=1/3АВ, МВ=1/3СВ) ⇒КМ=1/3АС=1/3*9=3см ΔАВС и ОВN подобны(тк ∠В - общий,OВ=2/3АВ, NВ=2/3СВ) ⇒ON=2/3АС=2/3*9=6см ответ 3 и 6
3) Чертим систему координат, отмечаем стрелками положительное направление: вправо и вверх;
Отмечаем начало координат - точку О (0; 0), подписываем оси : вправо - ось х , вверх - ось у
Отмечаем единичные отрезки по каждой оси в 1 клетку.
4) Отмечаем в системе координат вершину - точку (2; -1); нули функции - точки (1; 0) и (3; 0)
5) через вершину будущей параболы проводим пунктирную прямую, параллельную оси у - ось симметрии будущей параболы и вторую пунктирную прямую, параллельную оси х. В этой новой пунктирной системе координат строим параболу у=х², а именно добавляем пару точек для правильного продления вверх нашей параболы. В новой пунктирной системе координат ставим точки
х= 2 -2 3 -3
у= 4 4 9 9
Плавно соединяем все поставленные точки, подписываем график
Р=12+18+20=50см
ответ 50
опустим из вершины с на ад перпендикуляр: Δаве=Δдск⇒
АЕ=ДК=(17-5)/2=6
ответ 6
∠САД=∠АСВ=28° как внутренние накрестлежащие
в Δавс ∠ВАС=АСВ=28° как углы при основании равнобедренногоΔ
∠ВАД=∠СДА∠ВАС+∠АСВ=28+28=56° как углы при основании равнобедренной трапеции
∠АВС=∠ВСД=(360-2*56)/2=(360-112)/2=248/2=124°
ответ 59°,59°,124°,124°
пусть ВС =х, тогда АД =х+6 Сред линяя равна
МК=(х+х+6)/2, а по условию 7см
составим и решим уравнение
2х+6 / 2=7
2х+6=7*2
2х=14-6
х=8/2
х=4, значит вс=4, тогла ад=10
ΔАСД и ΔАСК подобны(т.к СК=1/2СД ∠С общий ∠СКО=∠СДА)⇒СО=1/2СА
т.е ОК - средняя линия ΔАСД⇒ ОК=1/2АД=1/2*10=5
МО=МК-ОК=7-5=2
ответ 5 и 2
ΔАВС и КВМ подобны(тк ∠В - общий, КВ=1/3АВ, МВ=1/3СВ)
⇒КМ=1/3АС=1/3*9=3см
ΔАВС и ОВN подобны(тк ∠В - общий,OВ=2/3АВ, NВ=2/3СВ)
⇒ON=2/3АС=2/3*9=6см
ответ 3 и 6
Объяснение:
у= х²-4х+3
график парабола
1) найдём координаты вершины В(х; у)
х(В) = -b/2a
x(B) = 4/2 = 2
y(B) = 4-8+3 = -1
B(2; -1) - вершина параболы
2) найдём нули функции
у = 0
х²-4х+3 = 0
Д= 16-12 = 4 = 2²
х(1) = (4-2)/2 = 1
х(2) = (4+2)/2 = 3
(1; 0) ; (3; 0) - нули функции
3) Чертим систему координат, отмечаем стрелками положительное направление: вправо и вверх;
Отмечаем начало координат - точку О (0; 0), подписываем оси : вправо - ось х , вверх - ось у
Отмечаем единичные отрезки по каждой оси в 1 клетку.
4) Отмечаем в системе координат вершину - точку (2; -1); нули функции - точки (1; 0) и (3; 0)
5) через вершину будущей параболы проводим пунктирную прямую, параллельную оси у - ось симметрии будущей параболы и вторую пунктирную прямую, параллельную оси х. В этой новой пунктирной системе координат строим параболу у=х², а именно добавляем пару точек для правильного продления вверх нашей параболы. В новой пунктирной системе координат ставим точки
х= 2 -2 3 -3
у= 4 4 9 9
Плавно соединяем все поставленные точки, подписываем график
у = х²-4х+3
Отвечаем на вопросы по графику
1)
у∈(-1; +∞) при х∈(-∞; +∞)
2)
у>0 при х∈(-∞; 1)U(3; +∞)
Подробнее - на -