Прямая может либо лежать в плоскости, либо быть параллельной плоскости, либо пересекать плоскость.
Докажем от противного: пусть прямая m не параллельна пл-сти b тогда прямая m либо лежит в плоскости b либо пересекает ее. из условия сказано, что прямая a лежит в плоскости a, тогда остается 1 случай : прямая m пересекает плоскость b. поскольку прямая m лежит в пл-сти а и при этом пересекает пл-сть b - это возможно только в том случае, если пл-сти a и b -пересекают, но по условию -они параллельны. Мы пришли к противоречию. Отсюда следуем, что прямая m параллельна пл-сти b
Две пары пересекающихся параллельных прямых отсекают четырехугольник ABCD, противоположные стороны которого попарно параллельны. т.к. принадлежат параллельным прямым. ⇒ АВСD- параллелограмм. В параллелограмме противоположные стороны равны. АВ и СD - противоположные стороны параллелограмма. ⇒ они равны.
2. В получившемся четырехугольнике соединим А и D. Треугольники АСD и имеют равные накрестлежащие углы при пересечении параллельных прямых а и b секущей AD, и той же секущей при пересечении параллельных прямых AB и CD, а сторона AD- общая. Второй признак равенства треугольников. Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны. ⇒АВ=CD
Докажем от противного:
пусть прямая m не параллельна пл-сти b
тогда прямая m либо лежит в плоскости b либо пересекает ее.
из условия сказано, что прямая a лежит в плоскости a, тогда остается 1 случай : прямая m пересекает плоскость b.
поскольку прямая m лежит в пл-сти а и при этом пересекает пл-сть b - это возможно только в том случае, если пл-сти a и b -пересекают, но по условию -они параллельны. Мы пришли к противоречию. Отсюда следуем, что прямая m параллельна пл-сти b
⇒ АВСD- параллелограмм.
В параллелограмме противоположные стороны равны.
АВ и СD - противоположные стороны параллелограмма. ⇒ они равны.
2.
В получившемся четырехугольнике соединим А и D. Треугольники АСD и имеют равные накрестлежащие углы при пересечении параллельных прямых а и b секущей AD, и той же секущей при пересечении параллельных прямых AB и CD, а сторона AD- общая.
Второй признак равенства треугольников. Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
⇒АВ=CD