Координаты середины отрезка есть среднее арифметическое между соответствующими координатами концов отрезка. Обозначим О1(х1;у1), О2(х2;у2), О3(х3;у3), где О2-середина отрезка О1О3. Составим уравнения для нахождения координат середины отрезка: х2=(х1+х3)/2, у2=(у1+у3)/2. В данных уравнениях известны х2 и х3, у2 и у3. Нужно найти х1 и у1.
Проведем высоты BH1 и CH2 (BC - меньшее основание): H1H2 = BC, т.к. высоты образуют прямоугольник (углы прямые), т.е. H1H2 = 7, а AH1 = H2D по свойству равнобедренной трапеции. Т.к. угол при основании равен 60°, в треугольнике ABH1 угол ABH1 = 30°, значит, катет, лежащий против этого угла, равен половине гипотенузы. AH1 = H2D = 5. AD = 10 + 7 = 17. BH1 = корень(100 - 25) = 5 корней из 3. Площадь трапеции = полусумме оснований * высоту = 12 * 5 корней из 3 = 60 корней из 3. ответ: 60 корней из 3.
Вариант ответа 5
Объяснение:
Это больше теоретический вопрос.
Координаты середины отрезка есть среднее арифметическое между соответствующими координатами концов отрезка. Обозначим О1(х1;у1), О2(х2;у2), О3(х3;у3), где О2-середина отрезка О1О3. Составим уравнения для нахождения координат середины отрезка: х2=(х1+х3)/2, у2=(у1+у3)/2. В данных уравнениях известны х2 и х3, у2 и у3. Нужно найти х1 и у1.
х2=(х1+х3)/2, 2х2=х1+х3, х1=2х2-х3 подставим значения: х1=2×7-13=1.
у2=(у1+у3)/2, 2у2=у1+у3, у1=2у2-у3 подставим значения: у1=2×(-2)-4=-8
О(1;-8)- искомая.
Т.к. угол при основании равен 60°, в треугольнике ABH1 угол ABH1 = 30°, значит, катет, лежащий против этого угла, равен половине гипотенузы. AH1 = H2D = 5. AD = 10 + 7 = 17.
BH1 = корень(100 - 25) = 5 корней из 3.
Площадь трапеции = полусумме оснований * высоту = 12 * 5 корней из 3 = 60 корней из 3.
ответ: 60 корней из 3.