проведем через точку М, пряммую перпендикулярную АD, так как AD||BC, то она будет перпендикулярна и прямой ВС, пусть пряммую AD она пересекает в точке L, а пряммую BC в точке K.
Тогда LM - высота параллелограмма ABCD, LM - высота треугольника ADM, KM - высота треугольника BCM.
Площадь парарлелограмма равна произведению его стороны на высоту, проведенную к этой стороне
Площадь треугольника равна половине произведения стороны на высоту провдеенной к этой стороне
Поэтому
S(AMD)+S(BMC)=1/2*AD*LM+1/2*BC*KM=так противоположные стороны парарлелограмма равны=
=1/2*AD*LM+1/2*AD*KM=1/2*AD*(LM+KM)=1/2*AD*LK=1/2*S(ABCD), что и требовалось доказать
проведем через точку М, пряммую перпендикулярную АD, так как AD||BC, то она будет перпендикулярна и прямой ВС, пусть пряммую AD она пересекает в точке L, а пряммую BC в точке K.
Тогда LM - высота параллелограмма ABCD, LM - высота треугольника ADM, KM - высота треугольника BCM.
Площадь парарлелограмма равна произведению его стороны на высоту, проведенную к этой стороне
Площадь треугольника равна половине произведения стороны на высоту провдеенной к этой стороне
Поэтому
S(AMD)+S(BMC)=1/2*AD*LM+1/2*BC*KM=так противоположные стороны парарлелограмма равны=
=1/2*AD*LM+1/2*AD*KM=1/2*AD*(LM+KM)=1/2*AD*LK=1/2*S(ABCD), что и требовалось доказать
В любом параллелограмме стороны попарно равны и параллельны: АВ=СД, ВС=АС
Зная, что АС||ВД, можем утверждать, что:
Угол А+угол Б=180 градусов (смежные углы при АС||ВД и секущей АВ)
Пусть угол В=х, тогда угол А=х+20 (из условия).
Составим уравнение.
х+х+20=180
2х=160
х=80
Итак, угол В=80 градусов, а мы знаем, что в каждом параллелограмме противоположные углы равны, отсюда: угол В=угол Д=80 градусов
Найдём угол А: 180-угол В=180-80=100 градусов. Аналогично: угол А=угол С=100 градусов
ответ: угол А=100 градусов
угол В=80 градусов
угол С=100 градусов
угол Д=80 градусов