Геометрия условие на двух языках.
Укр:
Бісектриси гострих кутів трапеції перетинаються на її верхній основі. Знайдіть основи трапеції, якщо різниця їхніх довжин дорівнює 6 см, а периметр трапеції – 21 см. У відповідь запишіть добуток основ.
Рос:
Биссектрисы острых глов трапеции пересекаються на её верхней основе. Найдите основы трапеции, если разница их длинн - 6см, а периметр трапеции - 21см. В ответ написать произведение длинн основ.
1)Сначала рассмотрим треугольники АВО и СОМ
АО = ОС - по условию
ВО = ОМ - по условию
угол ВОА = угол МОС - вертикальные, следовательно треугольники равны по первому признаку равенства треугольников, следовательно АВ = СМ и угол АВО = углу СМО
2)Затем рассмотрим треугольники ВОС и АОМ
ВО = ОМ - по условию
ОС = ОА - поу словию
угол ВОС = углу АОМ - вертикальные, следовательно треугольники равны по первому признаку равенства треугольников, следовательно ВС = АМ и угол АМО = угол ОВС
3) угол АВС = угол АВО + угол ОВС
угол АМС = угол АМО + угол ОМС
угол АМО = угол ОВС
угол АВО = углу СМО, следовательно угол АВС = углу АМС
4)Рассмотрим треугольники АВС и АМС
АВ = СМ - по доказонному (1)
ВС = АМ - по доказонному (2)
угол АВС = углу АМС - по доказонному (3), следовательно треугольники равны по первому признаку равенства треугольников
Рассмотрим четырёхугольник ABCD.
По условию задачи имеем:
AB = BC и AD = DC.
Опустим высоту BH треугольника ABC из вершины B на основание AC.
Так как AB = BC, то треугольник ABC - равнобедренный и высота BH является одновременно и медианой, т.е. AH = CH.
Аналогично опустим высоту DG треугольника ADC из вершины D на основание AC.
Так как AD = DC, то треугольник ADC - равнобедренный и высота DG является одновременно медианой, т.е. AG = CG.
Так как AH = CH и AG = CG, то точки H и G совпадают.
BH и DG перпендикулярны AC и точки H и G совпадают.
Следовательно, BH и DG лежат на прямой перпендикулярной AC и BD является диагональю четырехугольника ABCD.
Итак получили, что диагонали AC и ВD перпендикулярны, что и требовалось доказать.
можете не благодарить