1) Равными называются векторы (обозначены знаком ⁻), которые сонаправлены, и их длины равны:
⁻АВ = ⁻ED
⁻BC = ⁻FE
Примечание. В правильном шестиугольнике все стороны равны. Поэтому берём противоположные стороны (они параллельны) и задаём им одно и то же направление.
2) Два коллинеарных (то есть параллельных) вектора называются противоположно направленными, если их направления не совпадают:
⁻FA и ⁻CD
⁻FA и ⁻BE
Примечание. Аналогично п.1, только направляем в разные стороны.
3) Два коллинеарных (то есть параллельных) вектора называются сонаправленными, если их направления совпадают.
⁻ВС и ⁻AD
⁻FA и ⁻EB.
Примечание. Диагональ ⁻AD параллельна стороне ⁻ВС, но в 2 раза больше. Диагональ ⁻ЕВ параллельна стороне ⁻FA, но в 2 раза больше.
257°.
Чтобы найти координаты вектора, необходимо от соответствующих координат конца вектора отнять координаты начала.
Объяснение:
Геометрическая фигура, образованная тремя пересекающимися прямыми, образующими три внутренних угла, а также всякий предмет, устройство такой формы.
Треугольники бывают по углам:
Если все углы треугольника острые, то треугольник называется остроугольным;
Если один из углов треугольника тупой (больше ), то треугольник называется тупоугольным;
Если один из углов треугольника прямой (равен ), то треугольник называется прямоугольным.
По сторонам:
Треугольник называется равнобедренным, если у него две стороны равны.
Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника.
Треугольник, у которого все стороны равны, называется равносторонним или правильным.
Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°.
Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой, две другие стороны называются катетами.
Разносторонним или произвольным треугольником называется треугольник, у которого все длины и все углы не равны между собой.
См. Объяснение
Объяснение:
255°.
1) Равными называются векторы (обозначены знаком ⁻), которые сонаправлены, и их длины равны:
⁻АВ = ⁻ED
⁻BC = ⁻FE
Примечание. В правильном шестиугольнике все стороны равны. Поэтому берём противоположные стороны (они параллельны) и задаём им одно и то же направление.
2) Два коллинеарных (то есть параллельных) вектора называются противоположно направленными, если их направления не совпадают:
⁻FA и ⁻CD
⁻FA и ⁻BE
Примечание. Аналогично п.1, только направляем в разные стороны.
3) Два коллинеарных (то есть параллельных) вектора называются сонаправленными, если их направления совпадают.
⁻ВС и ⁻AD
⁻FA и ⁻EB.
Примечание. Диагональ ⁻AD параллельна стороне ⁻ВС, но в 2 раза больше. Диагональ ⁻ЕВ параллельна стороне ⁻FA, но в 2 раза больше.
257°.
Чтобы найти координаты вектора, необходимо от соответствующих координат конца вектора отнять координаты начала.
Для вектора ⁻АВ:
3 - 1 = 2 - это координата х;
7 - 2 = 5 - это координата у;
6 - 3 = 3 - это координата z.
⁻АВ = {2; 5; 3}
Аналогично для ⁻ВА:
⁻ВА = {-2; -5; -3}
Задание без номера.
х = а;
у = 2а;
z = - а.
Находим модуль:
√(а² + (2а)² +(-а)²) = √6а²
√6а² = √54
6а² = 54
а = 3
2а = 2 · 3 = 6
- а = - 3
Координаты вектора ⁻а:
⁻а = {3; 6; -3}