Длина любой окружности больше своего диаметра в одно и то же число раз, а именно, приблизительно в 3,14 раза. Для обозначения этой величины используется маленькая (строчная) греческая буква π (пи):
C = π.
D
Таким образом, длину окружности (C) можно вычислить, умножив константу π на диаметр (D), или умножив π на удвоенный радиус, так как диаметр равен двум радиусам. Следовательно, формула длины окружности будет выглядеть так:
C = πD = 2πR,
где C — длина окружности, π — константа, D — диаметр окружности, R — радиус окружности.
Так как окружность является границей круга, то длину окр
Допустим AK < BK (точка K ближе к вершине A) .
Обозначаем сторону основания правильной пирамиды
AB=BC =CD =DA =a ;
Пусть выполняется S(ABCD) =S(KPM) ⇔
a² =KM*PO/2 ⇔a² =KM*(1,5a)/2⇒KM= 4a/3 . AB= a< 4a/3 < a√2 =AC ,.т.е KM не ⊥ AD и KM не совпадает с диагоналями основания .
б)
Через центр основания O проведем EF ⊥ AD (тоже самое EF ⊥ CD), где
E ∈ [AD] , F ∈ [BC] . || K∈[AE] ||
ΔOEK = ΔOFM по второму признаку равенства треугольников (OE=OF=AB/2 ;∠OEK =∠OFM=90° и ∠KOE =∠MOF-вертикальные углы) .
MF=KE .
---
Sпол(PABMK) = S(ABMK) +S₁бок .
S(ABMK) =(AK +BM)/2 *AB ; AK +BM =(a/2 -KE) +(a/2 +MF)=a.
⇒S(ABMK) =(AK +BM)/2 *AB=a/2 *a =a²/2.
S₁бок =S(APK) +S(BPM)+S(APB) +S(KPM) =AK*h/2+BM*h/2+a*h/2+a²=
=(AK+BM)*h/2 +.a*h/2 +a² =a*h/2+a*h/2+a² =a*h+a² .
Sпол(PABMK)=a²/2+a*h+a²=3a²/2+a*h = (3a+2a*h)/2, где h_длина апофема .
ΔEPF h =EP=√((a/2)² +PO²) =√(a²/4 +9a²/4) =(a√10)/2 .
---
Sпол(PABCD) = S(ABMK) +S₂бок =a²+4*a*h/2 =a²+2*a*h ;
Sпол(PABMK)/ Sпол(PABCD) =(3a²+2a*h )/2 : (a²+2*a*h) =
=a²(3+√10)/2 : a² (1+√10) =(3+√10) / 2(1+√10).
Объяснение: вот
Длина любой окружности больше своего диаметра в одно и то же число раз, а именно, приблизительно в 3,14 раза. Для обозначения этой величины используется маленькая (строчная) греческая буква π (пи):
C = π.
D
Таким образом, длину окружности (C) можно вычислить, умножив константу π на диаметр (D), или умножив π на удвоенный радиус, так как диаметр равен двум радиусам. Следовательно, формула длины окружности будет выглядеть так:
C = πD = 2πR,
где C — длина окружности, π — константа, D — диаметр окружности, R — радиус окружности.
Так как окружность является границей круга, то длину окр