Знайти проекцію точки M(3;-2;0) на площину 3x-2y+z+1=0.
Для этого надо найти точку пересечения перпендикуляра из точки М к заданной плоскости с самой плоскостью.
Нормальный вектор этой плоскости равен (3; -2; 1) и является направляющим вектором перпендикуляра к плоскости.
Получаем уравнение перпендикуляра из точки М(3; -2; 0).
((x – 3)/3 = (y + 2)/(-2) = ((z – 0)/1.
Координаты, которые имеет точка Е пересечения x,y,z, должны удовлетворять уравнению прямой и уравнению плоскости. Поэтому, для их определения, необходимо решить систему уравнений, которая включает уравнение прямой и уравнение плоскости. Это система:
{((x – 3)/3 = (y + 2)/(-2) = z/1.
{3x - 2y + z + 1 = 0.
Из уравнения прямой получаем зависимость переменных.
-2x + 6 = 3y + 6, отсюда y = (-2/3)x.
x - 3 = 3z, отсюда z = (1/3)x - 1.
Подставим их в уравнение плоскости 3x-2y+z+1=0.
3x – 2((-2/3)x) + 1((1/3)x -1) + 1 = 0,
3x + (4/3)x + (1/3)x – 1 + 1 = 0,
(14/3)x = 0,
x = 0,
y = (-2/3) *0 = 0,
z = (1/3)*0 - 1 = -1.
Найдена точка E пересечения перпендикуляра из точки М и плоскости, которая и является проекцией точки М на заданную плоскость.
Знайти проекцію точки M(3;-2;0) на площину 3x-2y+z+1=0.
Для этого надо найти точку пересечения перпендикуляра из точки М к заданной плоскости с самой плоскостью.
Нормальный вектор этой плоскости равен (3; -2; 1) и является направляющим вектором перпендикуляра к плоскости.
Получаем уравнение перпендикуляра из точки М(3; -2; 0).
((x – 3)/3 = (y + 2)/(-2) = ((z – 0)/1.
Координаты, которые имеет точка Е пересечения x,y,z, должны удовлетворять уравнению прямой и уравнению плоскости. Поэтому, для их определения, необходимо решить систему уравнений, которая включает уравнение прямой и уравнение плоскости. Это система:
{((x – 3)/3 = (y + 2)/(-2) = z/1.
{3x - 2y + z + 1 = 0.
Из уравнения прямой получаем зависимость переменных.
-2x + 6 = 3y + 6, отсюда y = (-2/3)x.
x - 3 = 3z, отсюда z = (1/3)x - 1.
Подставим их в уравнение плоскости 3x-2y+z+1=0.
3x – 2((-2/3)x) + 1((1/3)x -1) + 1 = 0,
3x + (4/3)x + (1/3)x – 1 + 1 = 0,
(14/3)x = 0,
x = 0,
y = (-2/3) *0 = 0,
z = (1/3)*0 - 1 = -1.
Найдена точка E пересечения перпендикуляра из точки М и плоскости, которая и является проекцией точки М на заданную плоскость.
ответ: Е(0; 0; -1).
Дано:треугольник АВС
<С=42 градуса
Внешний угол,смежный с <А=68 градусов
—————————————————————
Найти :<А,<В,внешний угол смежный с углом В
Решение
Внешний угол 68 градусов и смежный ему внутренний угол А в сумме равны 180 градусов
<А=180-68=112 градусов
<В=180-(42+112)=180-154=26 градусов
Проверка 42+112+26=180 градусов
Осталось найти внешний угол смежный внутреннему углу В.Сумма внешнего и внутреннего смежных углов равна 180 градусов
180-26=154 градуса
Проверка сумма внутренних углов не смежных внешнему углу равна градусной мере внешнего не смежного им угла
42+112=154 градуса
Объяснение: