За теоремою про паралельні прямі <C=<A=20°=>CM||AK.
4)1. Будуємо перпендикуляр;
2. Будуємо кут;
3.Від одного променя кута будуємо гіпотенузу;
4.Візьми кут 45°! Виміряємо кут з верхньої вершини гіпотенузи, також 45°;
5.Будуємо катети.
3) EH—бісектриса, тому <MEH=<AEH=30°. За властивістю катета, який лежить напроти кута 30°:EH=MH*2=6*2=12(см). Розглянемо трикутник EHA: за властивістю рівнобедреного трикутника(кут при основі рівні <AEH=<EAH=30°):EH=AH=12см.
1. Немає даних2. СД=корінь(АД *ВД)=корінь(36*49)=42, 4. периметр1(Р1)=72, периметр2(Р2)=7+8+9=24, Р1/Р2=k=72/24=3, сторона1=3*7=21, сторона1-2=3*8=24, сторона1-3=3*9=27, 5. гіпотенуза=корінь(катет1 в квадраті+катет2 в квадраті)=корінь(36+64)=10, радіус кола=1/2гіпотенузи=10/2=5, 6. Трапеція АВСД, АВ=10ВС=9, СД=17, АД=30, проводимо висоти ВН і СК на АД, ВН=СК, НВСК-прямокутник ВС=НК=9, КД=х, АН=АД-НК-КД=30-9-х=21-х, трикутник АВН, ВН в квадраті=АВ в квадраті-АН в квадраті=100-441+42х-х в квадраті, трикутник КСД СК=СД в квадраті-КД в квадраті=289-х в квадраті, 100-441+42х-х в квадраті=289-х в квадраті, х=15=КД, АН=21-15=6, ВН=корінь(100-36)=8
1)Розглянемо трикутник CPM:<P=90°,<C=20°=> <M=70°.
У трикутнику KPA:<P=90°,<K=70°=> <A=20°.
За теоремою про паралельні прямі <C=<A=20°=>CM||AK.
4)1. Будуємо перпендикуляр;
2. Будуємо кут;
3.Від одного променя кута будуємо гіпотенузу;
4.Візьми кут 45°! Виміряємо кут з верхньої вершини гіпотенузи, також 45°;
5.Будуємо катети.
3) EH—бісектриса, тому <MEH=<AEH=30°. За властивістю катета, який лежить напроти кута 30°:EH=MH*2=6*2=12(см). Розглянемо трикутник EHA: за властивістю рівнобедреного трикутника(кут при основі рівні <AEH=<EAH=30°):EH=AH=12см.
AM=MH+AH=6+12=18(см).
2)<KEM=180°-(<MKE+<KME) ?
не знаю, как-то так