Геометрия
1. В равностороннем треугольнике АВС биссектрисы СК и АF пересекаются в точке М. Найдите угол АМС
2. См фото. Найти угол АВС
3. Боковая сторона раснобедоенного треугольника равна 12см, а основание равно 10см. Найдите площадь треугольника.
3. Сторона ромба равна 16 см, а острый угол равен 60° . Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
4. Тангенс острого угла прямоугольной трапеции равен 5/6 Найдите её большее основание, если меньшее основание равно высоте и равно 15 см.
5. В треугольнике АВС угол А=90 градусов. АВ=9см, АС=4см. Найдите синус , косинус, тангенс углов В и С.
высоту этой фигуры можно найти из прямоугольного треугольника, образованного длинной диагональю основания, большей диагональю параллелепипеда и высотой.
длинную диагональ основания можно найти по теореме косинусов. знаем длину двух сторон треугольника, образованного сторонами основания, а угол между ними равен
180-60=120°
квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a2 = 32 + 52 - 2bc·cos(120)
a²=34-30·(-0,5)=49
a=7
теперь очередь дошла до высоты параллелограмма.
h²=25²-7²=574
h=24 cм
Окружность, вписанная в треугольник АВС с периметром, равным 20 см, делит точкой касания сторону АС на отрезки АК = 5 см, КС = 3 см. Определите, каким является треугольник: остроугольным, тупоугольным или прямоугольным?
Объяснение:
По т. об отрезках касательных АК=АР=5 см, СК=СМ=3 см.
Р=АВ+ВС+АС ,
20=(5+ВР)+(3+ВМ)+(5+3),
4=ВР+ВМ , но ВР=ВМ, тогда ВР=ВМ=2 см.
АВ= 7 см, ВС=5 см, АС=8 см .
Проверим условие а²+в² ....?....c²
7²+5²=49+25=74
8²=64 , 74>64 значит ΔАВС-остроугольный т.к. " Если квадрат наибольшей стороны меньше суммы квадратов двух других сторон:
с² < a²+b² треугольник остроугольный. "