Геометрия 1 вариант 1. СА – касательная к окружности. Вычислите градусную меру угла ВАС 2. Равнобедренный треугольник DEF (DE=EFвписан в окружность Угол при вершине E равен 70 .Найдите величины дуг DE Eғи DF.
Попробую стать лаской. Хотя обычно я злой, очень злой.
Давай попробуем рассуждать логически. В маленьком треугольнике, отсекаемом от заданного высотой, нам даны катет 12 (он равен высоте большого), и гипотенуза 24 (она равна катету большого). Из этого можем найти второй катет маленького, назовём его банальной буквой х. По теореме Пифагора, х^2 = 24^2 - 12^2 = 432 х = корень(432) = 12*корень(3).
теперь нам нужно заметить, что маленький и большой треугольники подобны по трём углам (у них обоих имеется прямой угол, и ещё один из острых углов у них общий). При этом у большого треугольника катет дан 24 см, а у маленького мы нашли в предыдущем действии 12*корень(3). Значит можем составить пропорцию.
Назовём гипотенузу большого треугольника, которую нужно найти банальной буквой у. Тогда у / 24 = 24 / (12*корень(3)) Отсюда у = 24 * 24 / (12*корень(3)) = 48 / корень(3) = 16*корень(3) Если угодно в цифрах, то 16 * 1,732 = примерно 27,71 см
Ну так у меня получилось. Уж не знаю обманул тебя или правду сказал.
Если сделать рисунок, то будет понятно, что радиус этой окружности - катет АС данного прямоугольного треугольника.
Если окружность имеет с прямой только одну общую точку, то эта прямая - касательная к этой окружности.
Вершина угла А - точка касания.
Радиус окружности найдем по теореме Пифагора или вспомнив, что три стороны этого треугольника из так называемых троек Пифагора с отношением сторон 5:12:13.
Треугольник, длины сторон которого равны пифагоровым числам, является прямоугольным. Кроме того, любой такой треугольник является героновым, то есть, все его стороны и площадь являются целыми числами.
Давай попробуем рассуждать логически. В маленьком треугольнике, отсекаемом от заданного высотой, нам даны катет 12 (он равен высоте большого), и гипотенуза 24 (она равна катету большого). Из этого можем найти второй катет маленького, назовём его банальной буквой х. По теореме Пифагора,
х^2 = 24^2 - 12^2 = 432
х = корень(432) = 12*корень(3).
теперь нам нужно заметить, что маленький и большой треугольники подобны по трём углам (у них обоих имеется прямой угол, и ещё один из острых углов у них общий). При этом у большого треугольника катет дан 24 см, а у маленького мы нашли в предыдущем действии 12*корень(3). Значит можем составить пропорцию.
Назовём гипотенузу большого треугольника, которую нужно найти банальной буквой у. Тогда
у / 24 = 24 / (12*корень(3))
Отсюда у = 24 * 24 / (12*корень(3)) = 48 / корень(3) = 16*корень(3)
Если угодно в цифрах, то 16 * 1,732 = примерно 27,71 см
Ну так у меня получилось. Уж не знаю обманул тебя или правду сказал.
Если сделать рисунок, то будет понятно, что радиус этой окружности - катет АС данного прямоугольного треугольника.
Если окружность имеет с прямой только одну общую точку, то эта прямая - касательная к этой окружности.
Вершина угла А - точка касания.
Радиус окружности найдем по теореме Пифагора или вспомнив, что три стороны этого треугольника из так называемых троек Пифагора с отношением сторон 5:12:13.
------------------------------------------------------------------------------------------------------------------------------------
Треугольник, длины сторон которого равны пифагоровым числам, является прямоугольным. Кроме того, любой такой треугольник является героновым, то есть, все его стороны и площадь являются целыми числами.
----------------------------------------------------------------------------------------------------------------------------------------
Катет АС=12 см, и является радиусом данной окружности