1. Противоположные углы ромба равны, следовательно угол ABD = углу BCD, и угол ABC = углу ADC, тогда пусть меньший угол (ABC, ADC) будет х, а больший угол (ABD, BCD) будет у;
2. Сумма большего и меньшего угла ромба равняется 180°, следовательно х+у = 180, и по условию у-х=60°, составим систему:
у+х=180° у-х=60° , сложим вместе два уравнение, тогда: у+х+у-х=240°, получается: 2у = 240°, и у = 120°, тогда х = 180-120=60°;
3. По свойствам диагоналей ромба следует, что они (диагонали) делятся в точке пересечения пополам => AC = 16см, тогда AO=OC=AC/2 = 8см;
4. По свойствам диагоналей ромба следует, что они являются биссектрисой углов ромба => угол OAB = угол BAD/2 = 60°, угол ABO = угол ABC/2 = 30°;
5. Рассмотрим треугольник АВО - прямоугольный, так как угол AOB = 90° (по свойствам диагоналей ромба они расположены перпендикулярно относительно друг друга), угол BAO = 60°, угол ABO = 30°, по теореме об угле в 30° в прямоугольном треугольнике => AB = 2AO = 16см;
2. Сумма большего и меньшего угла ромба равняется 180°, следовательно х+у = 180, и по условию у-х=60°, составим систему:
у+х=180°
у-х=60° , сложим вместе два уравнение, тогда: у+х+у-х=240°, получается: 2у = 240°, и у = 120°, тогда х = 180-120=60°;
3. По свойствам диагоналей ромба следует, что они (диагонали) делятся в точке пересечения пополам => AC = 16см, тогда AO=OC=AC/2 = 8см;
4. По свойствам диагоналей ромба следует, что они являются биссектрисой углов ромба => угол OAB = угол BAD/2 = 60°, угол ABO = угол ABC/2 = 30°;
5. Рассмотрим треугольник АВО - прямоугольный, так как угол AOB = 90° (по свойствам диагоналей ромба они расположены перпендикулярно относительно друг друга), угол BAO = 60°, угол ABO = 30°, по теореме об угле в 30° в прямоугольном треугольнике => AB = 2AO = 16см;
6. P = 4AB = 4*16 = 64см.
ответ: Периметр 64см
№2 конус АВС, В-вершина, О-центр основания, АО=радиус=R, уголВАО=30, АВ-образующая, треугольник АВО прямоугольный, ВО-высота конуса, АВ=АО/cos30=R/корень3/2=2R*корень3/3, ВО=1/2АВ=2R*корень3/6=R*корень3/3 =диаметр шара, объем конуса=1/3пи*радиус в квадрате*высота=(пи*R в квадрате*R*корень3)/(3*3)=пи*R в кубе*корень3/9, объем шара=4/3пи*радиус в кубе, радиус шара=R*корень3/6, объем шара=4/3пи*(R*корень3/6) в кубе=пи*R в кубе*корень3/54, объем конуса/объем шара=(пи*R в кубе*корень3/9) / (пи*R в кубе*корень3/54)=6/1
№3 диаметр цилиндра=высота цилиндра=2R, радиус цилиндра=R, объем цилиндра=пи*радиус в квадрате*высота=пи*R*R*2R=2пи*R в кубе, радиус шара=1/2высота цилиндра=2R/2=R, объем шара=4/3пи*радиус в кубе=4/3пи*R в кубе, объем цилиндра/объем шара=(2пи*R в кубе)/(4/3пи*R в кубе)=3/2