№1 трапеция АВСД, СД=25, ОД=15, ОВ=9, треугольник АОВ подобен треугольнику ДОС по двум равным углам (уголАОВ=уголДОС как вертикальные, уголДСО=уголВАО как внутренние разносторонние), АВ/СД=ОВ/ОД, АВ/25=9/15, АВ=25*9/15=15, ДС/АВ=ОС/ОА, 25/15=ОС/ОА, 5/3=ОС/ОА, площади подобных треугольников относятся как квадраты подобных сторон, площадь АОВ/площадь ДОС=АВ в квадрате/СД в квадрате=225/625=9/25
№2 треугольник АВС подобен трецугольнику КМН по третьему признаку (три стороны одного треугольника пропорцианальны трем сторонаим другого), АВ/КМ=8/10=4/5, ВС/МН=12/15=4/5, АС/КН=16/20=4/5, пропорции равны, вподобных треугольниках против подобных сторон лежат равные углы, уголА=уголК=80, уголВ=уголМ=60, уголС=уголН=(180-80-60)=40
№3 трапеция АВСД, ВС=4, АД=12, площадь АОД=45, треугольник ВОС подобен треугольнику АОД по двум равным углам (уголВОС=уголАОД как вертикальные, уголОАД=уголВСО как внутренние разносторонние), площади относятся как квадраты сторон, ВС/АД=4/12=1/3, площадь ВОС/площадь АОД=(ВС/АД) в квадрате, площадь ВОС/45=1/9, площадь ВОС=45*1/9=5
Пусть большая сторона равна а, а меньшая равна b. Тогда периметр параллелограмма равен: P = 112 = 2a + 2b Площадь параллелограмма можно считать по любой стороне. Если считаем по большей, то она равна: S = a*12 А если считать по меньшей, то она равна: S = b*30 И в том, и в другом случае результат одинаков, т. е.: a*12 = b*30 Вспомним про предыдущее уравнение: 112 = 2a + 2b Получим два уравнения с двумя неизвестными. Выразим а в последнем уравнении и подставим в первое: a = 56 - b 12*(56 - b) = 30*b 672 - 12b = 30b 672 = 42b b = 16 Ну а теперь найдем площадь: S = 30*b = 30*16 = 480 см. У меня в учебнике наподобие твоей. Это как образец.
№1 трапеция АВСД, СД=25, ОД=15, ОВ=9, треугольник АОВ подобен треугольнику ДОС по двум равным углам (уголАОВ=уголДОС как вертикальные, уголДСО=уголВАО как внутренние разносторонние), АВ/СД=ОВ/ОД, АВ/25=9/15, АВ=25*9/15=15, ДС/АВ=ОС/ОА, 25/15=ОС/ОА, 5/3=ОС/ОА, площади подобных треугольников относятся как квадраты подобных сторон, площадь АОВ/площадь ДОС=АВ в квадрате/СД в квадрате=225/625=9/25
№2 треугольник АВС подобен трецугольнику КМН по третьему признаку (три стороны одного треугольника пропорцианальны трем сторонаим другого), АВ/КМ=8/10=4/5, ВС/МН=12/15=4/5, АС/КН=16/20=4/5, пропорции равны, вподобных треугольниках против подобных сторон лежат равные углы, уголА=уголК=80, уголВ=уголМ=60, уголС=уголН=(180-80-60)=40
№3 трапеция АВСД, ВС=4, АД=12, площадь АОД=45, треугольник ВОС подобен треугольнику АОД по двум равным углам (уголВОС=уголАОД как вертикальные, уголОАД=уголВСО как внутренние разносторонние), площади относятся как квадраты сторон, ВС/АД=4/12=1/3, площадь ВОС/площадь АОД=(ВС/АД) в квадрате, площадь ВОС/45=1/9, площадь ВОС=45*1/9=5