Гипотенуза прямоугольного треугольника равен 14 см, а длина проекции одного из катетов на гипотенузу равна 12 см. найдите длину проекции второго катета.
1) Пусть средняя линия будет KH Проведем высоту BT к основанию AD угол ABT = 30 градусов, поэтому AT = 6 Проведем высоту CJ к основанию AD JD = CD так как треугольник CJD - равнобедренный Средняя линия трапеции: 1/2(BC+AD) = 1/2(8 + 8+ 10 + 6) = 1/2 * 32 = 16
2) Назовем данную трапецию ABCD, где BC, AD - основания, проведем две высоты BK, CL, тогда длина AK будет равна 5 см, а длина KD будет равна 12 см, тогда длина LD будет равна длине AK и будет равна также 5 см. KL = KD - LD = 12 - 5 = 7 см. Так как длина KL равна длине меньшего основания, тогда длина BC также равна 7 см, можем найти среднюю линию трапеции, если BC = 7 см, AD = 17 см. (BC + AD) / 2 = (7 + 17) / 2 = 12 см. ответ: длина средней линии 12 см.
Проведем высоту BT к основанию AD
угол ABT = 30 градусов, поэтому AT = 6
Проведем высоту CJ к основанию AD
JD = CD так как треугольник CJD - равнобедренный
Средняя линия трапеции: 1/2(BC+AD) = 1/2(8 + 8+ 10 + 6) = 1/2 * 32 = 16
2) Назовем данную трапецию ABCD, где BC, AD - основания, проведем две высоты BK, CL, тогда длина AK будет равна 5 см, а длина KD будет равна 12 см, тогда длина LD будет равна длине AK и будет равна также 5 см.
KL = KD - LD = 12 - 5 = 7 см.
Так как длина KL равна длине меньшего основания, тогда длина BC также равна 7 см, можем найти среднюю линию трапеции, если BC = 7 см, AD = 17 см.
(BC + AD) / 2 = (7 + 17) / 2 = 12 см.
ответ: длина средней линии 12 см.
2) β = 180-(30+75) = 75°. Треугольник равнобедренный: с=в=4,56.
а = (b*sin α)/sin β = (4,56*0,5)/0,.965926 = 2,36043.
4) c = √(a²+b²-2ab*cosγ) = √(144+64-2*12*8*0,5) = √112 = 4√7 ≈ 10,58301.
sin β = b*sin γ / c = (8*√3)/(2*4√7) = √(3/7).
β = arc sin(√(3/7)) = 40,86339°.
α = 180-60-40,86339 = 79,10661°.
6) b =√(49+100-2*7*10*(-0,5)) = √219 ≈ 14,79865.
sin α = a*sin β/b = (*√3)/(2*√219) = 0,409644.
α = arc sin 0,409644 = 24,18547°.
γ = 180-120-24,18247 = 35,81753°.
8) Применяется теорема косинусов.
α = 18,19487°,
β = 128,68219°,
γ = 33,12294°.