Высота равнобедренного треугольника, проведенная к основанию, делит равнобедренный треугольник на два прямоугольных треугольника. И является биссектрисой угла при вершине. Пусть угол при основании х, тогда угол между высотой и боковой стороной равнобедренного треугольника равен (х-15°). Угол при вершине в два раза больше 2(х-15°)
Сумма углов треугольника равна 180° х+ х+2·(х-15°)=180° 4х=210° х=52,5° х-15°=52,5-15=37,5° Угол при вершине равнобедренного треугольника в 2 раза больше, так как высота равнобедренного треугольника является также и биссектрисой. ответ. углы при основании 52,5°; 52,5° и угол при вершине 75°
1) Так як за умовою точка К належить відрізку CD, то CD = CK + KD.
Нехай СК = х (см), тоді KD = х + 4 (см),
оскільки CD = 28 см, то х + х + 4 = 28; 2х + 4 = 28; 2х = 24; х = 12.
СК = 12 см, КD = 12 + 4 = 16 см.
Biдповідь: СК = 12 см, КD = 16 см.
2) Так як за умовою точка К належить відрізку CD, то CD = СК + ATD.
Нехай KD = х (см), тоді СК = 6х (см), оскільки CD = 28 см, то
х + 6х = 28; 7х = 28; х = 4.
КD = 4 см, CК = 6 • 4 = 24 см.
Biдповідь: KD = 4 см, СК = 24 см.
3) Так як за умовою точка К належить відрізку CD, то CD = СК + KD.
Нехай х (см) - одна частина, тоді СК = 3х (см), KD = 4х (см),
оскільки CD = 28 см, то 3х + 4х = 28; 7х = 28; х = 4.
СК = 3 • 4 = 12 см, КD = 4 • 4 = 16 см.
Biдповідь: СК = 12 см, КD = 16 см.
Пусть угол при основании х, тогда угол между высотой и боковой стороной равнобедренного треугольника равен (х-15°).
Угол при вершине в два раза больше 2(х-15°)
Сумма углов треугольника равна 180°
х+ х+2·(х-15°)=180°
4х=210°
х=52,5°
х-15°=52,5-15=37,5°
Угол при вершине равнобедренного треугольника в 2 раза больше, так как высота равнобедренного треугольника является также и биссектрисой.
ответ. углы при основании 52,5°; 52,5° и угол при вершине 75°