Квадратним коренем із числа а називається число, квадрат якого дорівнює а.
Наприклад: квадратний корінь із числа 4 дорівнює 2 або (-2), бо 22=4,(−2)2=4.
Арифметичний квадратний корінь
Арифметичним квадратним коренем із числа а називається невід’ємне число, квадрат якого дорівнює а.
Арифметичний квадратний корінь із числа а позначають так: a−−√. Знак √ називають знаком арифметичного квадратного кореня, вираз, який стоїть під знаком кореня, – підкореневим виразом. Запис читають так: «квадратний корінь із а» (слово «арифметичний» при читанні опускають).
Отже, a−−√=b,b≥0 означає b2=a.
Якщо а<0, то вираз a−−√ не має змісту.
Наприклад: 16−−√=4, бо 42=16; 225−−−√=15, бо 152=225.
З означення арифметичного квадратного кореня випливає, що при невід’ємних значеннях а справедлива рівність (a−−√)2=a.
Якщо a≥0, то a2−−√=a. Якщо a<0, то a2−−√=−a. Отже,
Объяснение: образующая конуса с радиусом образуют прямоугольный треугольник, в котором радиус и высота - катеты, а образующая- гипотенуза. Найдём высоту конуса h по теореме Пифагора:
h²=обр²-r²=25²-15²=625-225=400;
h=√400=20см
Так как осевым сечением конуса является треугольник, то его площадь вычисляется по формуле:
S=½×а×h, где а- сторона треугольника, а h- высота проведённая к стороне. Стороной бокового сечения является диаметр конуса=15×2=30см
Sсеч=½×30×20=15×20=300см²
Найдём площадь основания по формуле:
S=πr², где r- радиус основания:
Sосн=π×15²=225π(см²)
Площадь боковой поверхности конуса вычисляется по формуле: S=πrl, где r=радиус, а l- образующая:
Sбок.пов=π×15×25=375π(см²)
Чтобы найти полную площадь поверхности конуса нужно суммировать обе площади: основания и боковой поверхности:
Sпол=Sбок.пов+Sосн=
=375π+225π=600π(см²)
Теперь найдём объем конуса по формуле: V=⅓×Sосн×h=225π×20=4500π×⅓=
1. Квадратний корінь
Квадратним коренем із числа а називається число, квадрат якого дорівнює а.
Наприклад: квадратний корінь із числа 4 дорівнює 2 або (-2), бо 22=4,(−2)2=4.
Арифметичний квадратний корінь
Арифметичним квадратним коренем із числа а називається невід’ємне число, квадрат якого дорівнює а.
Арифметичний квадратний корінь із числа а позначають так: a−−√. Знак √ називають знаком арифметичного квадратного кореня, вираз, який стоїть під знаком кореня, – підкореневим виразом. Запис читають так: «квадратний корінь із а» (слово «арифметичний» при читанні опускають).
Отже, a−−√=b,b≥0 означає b2=a.
Якщо а<0, то вираз a−−√ не має змісту.
Наприклад: 16−−√=4, бо 42=16; 225−−−√=15, бо 152=225.
З означення арифметичного квадратного кореня випливає, що при невід’ємних значеннях а справедлива рівність (a−−√)2=a.
Якщо a≥0, то a2−−√=a. Якщо a<0, то a2−−√=−a. Отже,
a2−−√=|a|={a,a≥0,−a,a<0.
ответ: Sосн=225π(см²);
Sбок.пов=375π(см²); Sпол=600π(см²);
V=1500π(см³); Sсеч=300см²
Объяснение: образующая конуса с радиусом образуют прямоугольный треугольник, в котором радиус и высота - катеты, а образующая- гипотенуза. Найдём высоту конуса h по теореме Пифагора:
h²=обр²-r²=25²-15²=625-225=400;
h=√400=20см
Так как осевым сечением конуса является треугольник, то его площадь вычисляется по формуле:
S=½×а×h, где а- сторона треугольника, а h- высота проведённая к стороне. Стороной бокового сечения является диаметр конуса=15×2=30см
Sсеч=½×30×20=15×20=300см²
Найдём площадь основания по формуле:
S=πr², где r- радиус основания:
Sосн=π×15²=225π(см²)
Площадь боковой поверхности конуса вычисляется по формуле: S=πrl, где r=радиус, а l- образующая:
Sбок.пов=π×15×25=375π(см²)
Чтобы найти полную площадь поверхности конуса нужно суммировать обе площади: основания и боковой поверхности:
Sпол=Sбок.пов+Sосн=
=375π+225π=600π(см²)
Теперь найдём объем конуса по формуле: V=⅓×Sосн×h=225π×20=4500π×⅓=
=1500π(см³)