DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
Объяснение:
Формула:
(n²-3n)/2, где n- количество сторон (углов) многоугольника.
а) восьмиугольник
n=8
(8²-3*8)/2=(64-24)/2=40/2=20 диагоналей.
б) двадцатиугольник
n=20
(20²-3*20)/2=(400-60)/2=170 диагоналей
в) девятиугольник
n=9
(9²-3*9)/2=(81-27)/2=54/2=27 диагоналей
г) четырехугольник
n=4
(4²-3*4)/2=(16-12)/2=4/2=2 диагонали
д) семиугольник
n=7
(7²-3*7)/2=(49-21)/2=28/2=14 диагоналей
е) двенадцатиугольника
n=12
(12²-3*12)/2=(144-36)/2=54 диагонали.
ж) пятиугольник
n=5
(5²-3*5)/2=(25-15)/2=10/2=5 диагоналей
з) десятиугольник
n=10
(10²-3*10)/2=(100-30)/2=70/2=35 диагоналей
и) шестиугольник
n=6
(6²-3*6)/2=(36-18)/2=9 диагоналей.
DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
Объяснение:
Формула:
(n²-3n)/2, где n- количество сторон (углов) многоугольника.
а) восьмиугольник
n=8
(8²-3*8)/2=(64-24)/2=40/2=20 диагоналей.
б) двадцатиугольник
n=20
(20²-3*20)/2=(400-60)/2=170 диагоналей
в) девятиугольник
n=9
(9²-3*9)/2=(81-27)/2=54/2=27 диагоналей
г) четырехугольник
n=4
(4²-3*4)/2=(16-12)/2=4/2=2 диагонали
д) семиугольник
n=7
(7²-3*7)/2=(49-21)/2=28/2=14 диагоналей
е) двенадцатиугольника
n=12
(12²-3*12)/2=(144-36)/2=54 диагонали.
ж) пятиугольник
n=5
(5²-3*5)/2=(25-15)/2=10/2=5 диагоналей
з) десятиугольник
n=10
(10²-3*10)/2=(100-30)/2=70/2=35 диагоналей
и) шестиугольник
n=6
(6²-3*6)/2=(36-18)/2=9 диагоналей.