Через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.
Точки A,B и D не лежат на одной прямой. Тогда через них проходит единственная плоскость m. Докажем, что точка С также лежит в m.
Известно, что если две точки прямой лежат в некоторой плоскости, то вся прямая лежит в этой плоскости (то есть, все точки прямой лежат в этой плоскости). Точки А и В прямой a лежат в плоскости m, тогда все точки прямой a также лежат в плоскости m. Точка С лежит на прямой a, тогда точка С лежит в плоскости m. Таким образом, все четыре точки А,В,С,D лежат в плоскости m, что и требовалось доказать.
Дано: ΔABC - равнобедренный, АС - основание, АВ=ВС, ∠В=150°, АН - высота, АН = 8 е.д.
Найти: BC.
Решение.
Поскольку треугольник тупоугольный, а высота проведена из острого угла, то высота принадлежит продолжению противолежащей стороны.
Поэтому рисуем продолжение прямой ВС и высоту АН, проведённую к нему.
В ΔАНВ: ∠НВА = 180°-150°= 30° (как смежные).
АНВ - прямоугольный треугольник (АН ведь высота) с гипотенузой АВ.
В прямоугольном треугольнике, если острый угол равен 30°, то противолежащий этому углу катет равен половине гипотенузы.
АН=½АВ.
АВ= 2АН.
АН по условию 8, тогда АВ= 2×8=16.
ΔАВС - равнобедренный, АВ=ВС. Значит, ВС=16 е.д.
ответ: 16 е.д.
Точки A,B и D не лежат на одной прямой. Тогда через них проходит единственная плоскость m. Докажем, что точка С также лежит в m.
Известно, что если две точки прямой лежат в некоторой плоскости, то вся прямая лежит в этой плоскости (то есть, все точки прямой лежат в этой плоскости). Точки А и В прямой a лежат в плоскости m, тогда все точки прямой a также лежат в плоскости m. Точка С лежит на прямой a, тогда точка С лежит в плоскости m. Таким образом, все четыре точки А,В,С,D лежат в плоскости m, что и требовалось доказать.