Вписанный треугольник АВС в окружность с центром О. Градусная мера всей окружности 360°. Найдем градусные меры трех дуг, для этого обозначим одну часть через х, получится уравнение: х+2х+3х=360 х=360/6=60° Получается градусная мера дуги АВ=60°, дуги ВС=120°, дуги АС= 180°. Углы АВС, ВСА и САВ являются вписанными углами (вершины их лежат на окружности, а обе стороны пересекают эту окружность). Градусная мера вписанного угла равна половине дуги, на которую он опирается. <АВС =180/2=90°, <ВСА =60/2=30° и <САВ =120/2=60°. Исходя из того, что <АВС =90°, делаем вывод, что ΔАВС - прямоугольный и гипотенуза АС является диаметром окружности (вписанный угол, опирающийся на диаметр - прямой). Напротив меньшей стороны лежит меньший угол, значит катет АВ=17. Катет, лежащий против угла 30°, равен половине гипотенузы, следовательно радиус окружности ОА=ОВ=ОС=АВ=17 ответ: 17
Я еще ничего не сделал, а меня уже благодарят :( придется выложить решение. Я тогда сделаю такое решение, которое имеет самостоятельную методическую ценность. К тому же это и наиболее логичный метод решения. Курсив, как всегда, можно не читать.
Пусть через вершину B проведена прямая параллельно AC; AK (или, то же самое - AP) пересекает эту прямую в точке A1; CK пересекает BA в точке Q и BA1 - в точке C1; Треугольники BPA1 и APC подобны, поэтому BA1/AC = BP/PC; Треугольники BKA1 и AKM подобны, поэтому BA1/AM = BK/KM; То есть BP/PC = BA1/AC = (1/2)*BA1/AM = (1/2)*BK/KM;
Точно также показывается, что BQ/QA = (1/2)*BK/KM = BP/PC; Это означает, что QP II AC; и это - НЕ ЗАВИСИТ от того, где именно на медиане BM расположена точка K (условие BK/KM = 10/9; пока не использовалось). Это - очень важный результат сам по себе.
Таким образом, BP/PC = 5/9; Дальше слова "площадь треугольника ABC" будут записываться, как Sabc; Sbmc = Sabc/2 = S/2; Skmc = Sbmc*KM/BM = (S/2)*9/(9 + 10) = (S/2)*(9/19); Sbkc = (S/2)*(10/19); Spkc = Sbkc*PC/BC = Sbkc*9/(9 + 5) = (S/2)*(10/19)*(9/14); Smkpc = Smkc + Spkc = (S/2)*(9/19)*(1 + 10/14) = S*(9/19)*(6/7) = S*54/133; Smkpc/Sabc = 54/133;
Градусная мера всей окружности 360°.
Найдем градусные меры трех дуг, для этого обозначим одну часть через х, получится уравнение:
х+2х+3х=360
х=360/6=60°
Получается градусная мера дуги АВ=60°, дуги ВС=120°, дуги АС= 180°.
Углы АВС, ВСА и САВ являются вписанными углами (вершины их лежат на окружности, а обе стороны пересекают эту окружность). Градусная мера вписанного угла равна половине дуги, на которую он опирается.
<АВС =180/2=90°, <ВСА =60/2=30° и <САВ =120/2=60°.
Исходя из того, что <АВС =90°, делаем вывод, что ΔАВС - прямоугольный и гипотенуза АС является диаметром окружности (вписанный угол, опирающийся на диаметр - прямой).
Напротив меньшей стороны лежит меньший угол, значит катет АВ=17.
Катет, лежащий против угла 30°, равен половине гипотенузы, следовательно радиус окружности ОА=ОВ=ОС=АВ=17
ответ: 17
Пусть через вершину B проведена прямая параллельно AC;
AK (или, то же самое - AP) пересекает эту прямую в точке A1; CK пересекает BA в точке Q и BA1 - в точке C1;
Треугольники BPA1 и APC подобны, поэтому BA1/AC = BP/PC;
Треугольники BKA1 и AKM подобны, поэтому BA1/AM = BK/KM;
То есть BP/PC = BA1/AC = (1/2)*BA1/AM = (1/2)*BK/KM;
Точно также показывается, что BQ/QA = (1/2)*BK/KM = BP/PC; Это означает, что QP II AC; и это - НЕ ЗАВИСИТ от того, где именно на медиане BM расположена точка K (условие BK/KM = 10/9; пока не использовалось). Это - очень важный результат сам по себе.
Таким образом, BP/PC = 5/9;
Дальше слова "площадь треугольника ABC" будут записываться, как Sabc;
Sbmc = Sabc/2 = S/2;
Skmc = Sbmc*KM/BM = (S/2)*9/(9 + 10) = (S/2)*(9/19);
Sbkc = (S/2)*(10/19);
Spkc = Sbkc*PC/BC = Sbkc*9/(9 + 5) = (S/2)*(10/19)*(9/14);
Smkpc = Smkc + Spkc = (S/2)*(9/19)*(1 + 10/14) = S*(9/19)*(6/7) = S*54/133;
Smkpc/Sabc = 54/133;