А1. ∠САО = ∠МВО как накрест лежащие при пересечении АС║ВМ секущей АВ, ∠СОА = ∠МОВ как вертикальные, ⇒ ΔСОА подобен ΔМОВ по двум углам. СО : ОМ = АС : МВ 10 : ОМ = 15 : 3 ОМ = 10 · 3 : 15 = 2 см СМ = СО + ОМ = 10 + 2 = 12 см
А2. ∠АРК = ∠АСВ как накрест лежащие при пересечении КР║ВС секущей АС, ∠А общий для треугольников АКР и АВС, ⇒ ΔАКР подобен ΔАВС по двум углам. Отношение периметров подобных треугольников равно коэффициенту подобия: Pakp : Pabc = AK : AB Pakp = Pabc · AK / AB = (16 + 15 + 8) · 4 / 16 = 39 / 4 = 9,75 см
∠САО = ∠МВО как накрест лежащие при пересечении АС║ВМ секущей АВ,
∠СОА = ∠МОВ как вертикальные, ⇒
ΔСОА подобен ΔМОВ по двум углам.
СО : ОМ = АС : МВ
10 : ОМ = 15 : 3
ОМ = 10 · 3 : 15 = 2 см
СМ = СО + ОМ = 10 + 2 = 12 см
А2.
∠АРК = ∠АСВ как накрест лежащие при пересечении КР║ВС секущей АС,
∠А общий для треугольников АКР и АВС, ⇒
ΔАКР подобен ΔАВС по двум углам.
Отношение периметров подобных треугольников равно коэффициенту подобия:
Pakp : Pabc = AK : AB
Pakp = Pabc · AK / AB = (16 + 15 + 8) · 4 / 16 = 39 / 4 = 9,75 см
Смотри объяснения.
Объяснение:
Найдем стороны данного четырехугольника:
|AB| = √((Xb-Xa)²+(Yb-Ya)²)) = √((-1)² + (4)²) = √17 ед.
|CD| = √((Xd-Xc)²+(Yd-Yc)²)) = √(1² + (-4)²) = √17 ед.
|BC| = √((Xc-Xb)²+(Yc-Yb)²)) = √((-4)² + (-1)²) = √17 ед.
|AD| = √((Xd-Xa)²+(Yd-Ya)²)) = √((-4)² + (-1)²) = √17 ед.
Так как противоположные стороны четырехугольника попарно равны, четырехугольник ABCD - параллелограмм.
Вектора перпендикулярны, если их скалярное произведение равно 0. Проверим это на векторах АВ и ВС:
(АВ·ВС) = Xab·Xbc + Yab·Ybc = (-1)·(-4) + 4·(-1) = 4-4 =0.
Таким образом, вектора (стороны параллелограмма) АВ и ВС перпендикулярны.
Параллелограмм, у которого угол между смежными сторонами равен 90°, является прямоугольником, а прямоугольник с равными сторонами является квадратом.
Что и требовалось доказать.