Пусть СР=х, тогда АР=4-х. Пусть СК=у, тогда ВК=6-у. Из прямоугольных треугольников квадрат катета ВР можно найти двумя сразу их объединим: ВС²-СР²=АВ²-АР², 6²-х²=5²-(4-х)², 36-х²=25-16+8х-х², х=27/8. Аналогично из прямоугольных тр-ков АСК и АВК: АС²-СК²=АВ²-ВК², 4²-у²=5²-(6-у)², 16-у²=25-36+12у-у², у=27/12. В тр-ке АВС cosC=(АС²+ВС²-АВ²)/(2АС·ВС)=(16+36-25)/(2·4·6)=27/48. В тр-ке CPK по теореме косинусов РК²=СР²+СК²-2СР·СК·cosC. РК²=(27/8)²+(27/12)²-2·27·27·27/(8·12·48)=(729/64)+(729/144)-(27³/48²)=(729/64)+(324/64)-(19683/2304)=(1053/64)-(19683/2304)=2025/256. РК=45/16=2.8125 - это ответ.
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Пусть СК=у, тогда ВК=6-у.
Из прямоугольных треугольников квадрат катета ВР можно найти двумя сразу их объединим:
ВС²-СР²=АВ²-АР²,
6²-х²=5²-(4-х)²,
36-х²=25-16+8х-х²,
х=27/8.
Аналогично из прямоугольных тр-ков АСК и АВК:
АС²-СК²=АВ²-ВК²,
4²-у²=5²-(6-у)²,
16-у²=25-36+12у-у²,
у=27/12.
В тр-ке АВС cosC=(АС²+ВС²-АВ²)/(2АС·ВС)=(16+36-25)/(2·4·6)=27/48.
В тр-ке CPK по теореме косинусов РК²=СР²+СК²-2СР·СК·cosC.
РК²=(27/8)²+(27/12)²-2·27·27·27/(8·12·48)=(729/64)+(729/144)-(27³/48²)=(729/64)+(324/64)-(19683/2304)=(1053/64)-(19683/2304)=2025/256.
РК=45/16=2.8125 - это ответ.
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).