Могу предложить оригинальное решение Начерти куб со стороной a/(корень из 2 ) abcda1b1c1d1 теперь соедини точки a1bd видишь пирамиду aba1d очевидно что что стороны основания равны как диагонали равных квадратов граней а так же все ребра равны и все 2гранные углы при вершине прямые так же по теореме Пифагора можно убедится что сторона основания равна a то есть данная пирамида удовлетворяет условию задачи опишем теперь около куба окружность очевидно что она лежит на середине большой диагонали куба bd1 в силу симметричности куба а поскольку эта окружность и через все вершины пирамиды тк они лежат на кубе то это и есть радиус описанной около пирамиды окружность найдем ее рассмотрит прямоуг треуг b1d1d по теореме Пифагора диагональ равна a*(корень из 3) а радиус соответственно a*sqrt(3)/2
Первая легко. Значит основание сорстоит из отрезков 9 и 5, потому что средняя линия в каждом прямоугольном треугольнике равна попловине основания По теоереме Пифагора из одного прямоугольного треугольника Бокова сторона √9²+12²=15, другая боковая сторона √5²+12²=13 Периметр 15+13+(9+5)=42
Два прямоугольных треугольника подобны АОК и ВОК. К - основание высоты проведенной из О на сторону АВ. Из подобия 18:ОК=ОК:32. Тогда ОК²=18·32, ОК=24 Тангес угла АВО равен отношению противолежащего катета ОК к гипотенузе КВ. ответ 24/18 или сократим на 6 ответ 4/3
3 задача. Второй катет равен катету b, деленному на tgβ Так как проведена биссектриса, то в маленьком прямоугольном треугольнике половина угла β, т.е угол β/2. Косинус угла β/2 равен отношению прилежащего катета к гипотенузе. А гипотенуза маленького треугольника и есть биссектриса. ответ b·cos (β/2) / tgβ
По теоереме Пифагора из одного прямоугольного треугольника Бокова сторона √9²+12²=15, другая боковая сторона √5²+12²=13
Периметр 15+13+(9+5)=42
Два прямоугольных треугольника подобны АОК и ВОК. К - основание высоты проведенной из О на сторону АВ.
Из подобия 18:ОК=ОК:32. Тогда ОК²=18·32,
ОК=24
Тангес угла АВО равен отношению противолежащего катета ОК к гипотенузе КВ. ответ 24/18 или сократим на 6 ответ 4/3
3 задача. Второй катет равен катету b, деленному на tgβ
Так как проведена биссектриса, то в маленьком прямоугольном треугольнике половина угла β, т.е угол β/2.
Косинус угла β/2 равен отношению прилежащего катета к гипотенузе.
А гипотенуза маленького треугольника и есть биссектриса.
ответ b·cos (β/2) / tgβ