Итак, у нас есть прямоугольный треугольник ABH. Угол А равен 60, значит, угол В равен 30 градусов. Катет, лежащий против угла в 30 градусов, равен половине гипотенузы, то есть АН=половина АВ=4см.Нам дано, что АД=8см, мы вычислили, что АН=4 см, следовательно, ДН тоже равна 4 см. Т.к. мы имеем прямоугольную трапецию, то BC = ДН = 4 см.Осталось вычислить ВН. По теореме Пифагора находим, что она равна 4 корням из 3.Подставляем в формулу:Площадь трапеции = полусумма оснований умножить на высоту.Площадь трапеции = (4+8)\2*4 корня из 3 = 24 корня из трех.
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?
Т.к. мы имеем прямоугольную трапецию, то BC = ДН = 4 см.Осталось вычислить ВН. По теореме Пифагора находим, что она равна 4 корням из 3.Подставляем в формулу:Площадь трапеции = полусумма оснований умножить на высоту.Площадь трапеции = (4+8)\2*4 корня из 3 = 24 корня из трех.
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?