найдём гипатенузу АС треугольника АВС: по теореме Пифагора считаем АС²=АВ²+ВС² АС²=8²+8²=64+64=128 АС=√128=8√2 (см). проведём медиану ВК, которая будет являться радиусом окружности, который нам позже понадобится. В равнобедренном треугольнике медиана будет делить сторону АС на две равных части, тогда АК=8√2/2=4√2 (см). медиана ВК есть ещё и биссектриса, следовательно перед нами ещё один равнобедренный треугольник АВК, так что АК=ВК=4√2 (см). Теперь используем формулу для нахождения дуги окружности: L=2πr(ø/360°), где π-число пи; ø-центральный угол. для нашего случая используем эти стороны и углы: L=2π*BК(уголАВС/360°) подставим значения: L=2π*4√2(90°/360°)=2π√2≈8.885 (см). ответ: длина дуги, ограниченная треугольником АВС=2π√2 или ≈8.885 см.
Высота равностороннего треугольника равна 25√3. Найдите его периметр.
Решение:
1) Так как треугольник равносторонний, то ∠A = ∠B = ∠C = 180° : 3 = 60°.
2) Рассмотрим треугольник ABH (∠H = 90)
∠B = 180° - 90° - 60° = 30°
3) AH = половине AB = AB/2 - Катет, лежащий против угла в 30°.
AB2 = (25√3)2 + (AB/2)2
AB2 = 1875 + AB2/4
AB2 - AB2/4= 1875
(3AB2)/4 = 1875
Крест-накрест:
3AB2 = 4 * 1875
3AB2 = 7500
AB2 = 7500 / 3
AB2 = 2500
AB = √2500
AB = 50
4) Периметр равен сумме всех сторон, так как треугольник имеет 3 стороны и в данном случа они все равны, то:
P = 50 + 50 + 50 = 150
ответ: 150
найдём гипатенузу АС треугольника АВС:
по теореме Пифагора считаем
АС²=АВ²+ВС²
АС²=8²+8²=64+64=128
АС=√128=8√2 (см).
проведём медиану ВК, которая будет являться радиусом окружности, который нам позже понадобится. В равнобедренном треугольнике медиана будет делить сторону АС на две равных части,
тогда АК=8√2/2=4√2 (см).
медиана ВК есть ещё и биссектриса,
следовательно перед нами ещё один равнобедренный треугольник АВК,
так что АК=ВК=4√2 (см).
Теперь используем формулу для нахождения дуги окружности:
L=2πr(ø/360°), где π-число пи; ø-центральный угол.
для нашего случая используем эти стороны и углы:
L=2π*BК(уголАВС/360°)
подставим значения:
L=2π*4√2(90°/360°)=2π√2≈8.885 (см).
ответ: длина дуги, ограниченная треугольником АВС=2π√2 или ≈8.885 см.