Если разбить этот четырехугольник на 4 треугольника с вершинами в центре окружности, то площадь четырехугольника S получится равной сумме площадей этих четырех треугольников - причем их высоты одинаковы и равны радиусу вписанной окружности: S = h*|AB|/2 + h*|BC|/2 + h*|CD|/2 + h*|DA|/2 или S = h*(|AB| + |BC| + |CD| + |DA|)/2. То есть площадь равна произведению радиуса окружности на половину периметра. Нетрудно показать, для четырехугольника с вписанной окружностью верно следующее соотношение: |AB| + |BC| + |CD| + |DA| = (|AB| + |CD|)*2 = (|BC| + |DA|)*2, то есть S = h*(|AB| + |CD|) = h*(|BC| + |DA|) = 6*28 = 168 кв. см
Проведем перепендикуляры к боковым сторонам. Образовалось 2 треугольника. Поскольку треугольник равнобедренный, то углы при основании равны. Поскольку у тебя дано, что расстояние берем от середины основания, то в двух этих новый маленьких треугольниках гипотенузы равны, так как равны эти половинки. Тогда, рассмотримм 2 маленьких треугольника. Они равны по двум углам (один - 90 градусов, второй - угол при основании равнобедренного треугольника) и стороне - гипотенузе. раз треугольники равны, значит равны и все их элементы. => равны и катеты, то есть перепендикуляры к боковым сторонам, а значит и расстония от середины до боковых сторон.
Проведем перепендикуляры к боковым сторонам. Образовалось 2 треугольника. Поскольку треугольник равнобедренный, то углы при основании равны. Поскольку у тебя дано, что расстояние берем от середины основания, то в двух этих новый маленьких треугольниках гипотенузы равны, так как равны эти половинки. Тогда, рассмотримм 2 маленьких треугольника. Они равны по двум углам (один - 90 градусов, второй - угол при основании равнобедренного треугольника) и стороне - гипотенузе. раз треугольники равны, значит равны и все их элементы. => равны и катеты, то есть перепендикуляры к боковым сторонам, а значит и расстония от середины до боковых сторон.