Пусть в треугольнике ABC угол A равен a, угол C равен b, проведены биссектрисы AD и CE, которые пересекаются в точке O (см. рисунок). Рассмотрим треугольник AOC. Сумма его углов равна 180 градусам, тогда угол AOC равен 180-1/2BAC-1/2BCA=180-DAC-ECA=180-1/2(a+b). Угол, под которым пересекаются две прямые - это наименьший из углов, которые получаются при их пересечении. Докажем, что угол EOA будет меньше угла AOC, тогда угол EOA - угол, под которым пересекаются биссектрисы. Действительно, угол EOA является смежным с углом AOC, тогда он равен 1/2(a+b). Так как a+b<180, 1/2(a+b)<90 и 1/2(a+b)<180-1/2(a+b), то есть, какими бы ни были углы a и b, угол EOA всегда будет меньше угла AOC. Окончательный ответ - 1/2(a+b).
∠1 = 135°,
∠2 = 45°,
∠3 = 145°,
∠4 = 35°,
∠5 = 145°,
∠8 = 45°.
Объяснение:
1) Пронумеруем углы, начиная слева снизу, идём вверх, потом, а затем справа сверху идём вниз:
∠1 - найти,
∠2 - найти,
∠3 - найти,
∠4 - найти,
∠5 - найти,
∠6 = 35° - дано;
∠7 = 135° - дано;
∠8 - найти.
2) Решение:
∠1 = ∠7 = 135° - как углы вертикальные;
∠2= ∠8 = 180°(развернутый угол) - 135° = 45° - как углы вертикальные;
∠4 = ∠6 = 35° - как углы вертикальные;
∠3= ∠5 = 180°(развернутый угол) - 35° = 145° - как углы вертикальные.
∠1 = 135°,
∠2 = 45°,
∠3 = 145°,
∠4 = 35°,
∠5 = 145°,
∠8 = 45°.