ХЕЕЕЛП, (ПРАВИЛЬНУ ВІДПОВІДЬ РОЗПИШІТЬ БУДЬ ЛАСКА) Пряма MN паралельна площині а, а пряма M1N1 лежить у цій площині, MM1 || NN1. Яка довжина відрізка M1N1, якщо MN=10? A) 5 см Б) 10см В) 15 см Г) 20 см
В правильной пирамиде высота падает в центр основания, то есть в центр правильного многоугольника. Правильный четырёхугольник это квадрат, а его центр находится на пересечении диагоналей. Боковые грани правильной пирамиды это равнобедренные треугольники, которые равны. Апофема это высота боковой грани. В квадрате все стороны равны, диагонали равны и делятся точкой пересечения пополам.
Пусть P∈AD и MP⊥AD, тогда MP=17см и AP=PD т.к. в равнобедренном Δ высота является и медианой.
Пусть H∈(ABC) и MH⊥(ABC), тогда AC∩BD=H.
ΔMHP - прямоугольный, найдём неизвестный катет.
см.
ΔAHD - равнобедренный, поэтому PH не только медиана, но и высота.
ΔHPD - прямоугольный, ∠HDP=45° т.к. диагонали квадрата являются и биссектрисами, значит HP=PD=8см - равны как катеты, прямоугольного Δ с острым углом в 45°.
AD=2·PD=2·8см=16см.
Площадь квадрата можно найти через сторону, а площадь равнобедренного треугольника через сторону и высоту опущенную на эту сторону.
(х+5)см-другая сторона прямоугольника
Р-2*(а+в); 2*(х+х+5)=50
2х+5=25
2х=25-5
2х=20
х=10
10см-одна сторона прямоугольника; 10+5=15(см)-другая
2. угол А-угол прямоугольника
3х+6х=90, где 3хград и6х град-углы, которые образует диагональ со сторонами прям-ка
9х=90; х=10; 3*10=30град; 6*10=60град
Сумма углов треуг-каАОВ 180град: 60+60+х=180; х=60град
Из треуг-каАОД 30+30+х=180; х=120
60град-угол между диагоналями (берём наименьший!)
3. АВСД-параллелограмм; ВД-диагональ, ВД перпендикуляна АД! ВД=АД
тр-ник АВД-прямоугольный; tgA=BD /AD; tgA=1; УголА=45град
уголС=углуА=45гра(противоположные углы парал-ма)
УголА+уголВ=180град; УголВ=180-45; уголВ=135град
уголД=углуВ=135град
ответ. 45град;135град;45; 135градусов
В правильной пирамиде высота падает в центр основания, то есть в центр правильного многоугольника. Правильный четырёхугольник это квадрат, а его центр находится на пересечении диагоналей. Боковые грани правильной пирамиды это равнобедренные треугольники, которые равны. Апофема это высота боковой грани. В квадрате все стороны равны, диагонали равны и делятся точкой пересечения пополам.
Пусть P∈AD и MP⊥AD, тогда MP=17см и AP=PD т.к. в равнобедренном Δ высота является и медианой.
Пусть H∈(ABC) и MH⊥(ABC), тогда AC∩BD=H.
ΔMHP - прямоугольный, найдём неизвестный катет.
см.
ΔAHD - равнобедренный, поэтому PH не только медиана, но и высота.
ΔHPD - прямоугольный, ∠HDP=45° т.к. диагонали квадрата являются и биссектрисами, значит HP=PD=8см - равны как катеты, прямоугольного Δ с острым углом в 45°.
AD=2·PD=2·8см=16см.
Площадь квадрата можно найти через сторону, а площадь равнобедренного треугольника через сторону и высоту опущенную на эту сторону.
S(ABCD) = AD²=16² см².
S(AMD) = MP·AD:2=17·16:2 см².
S(бок. пов.) = 4·S(AMD)=4·17·16:2 см²=2·17·16 см².
S(полн. пов.) = S(ABCD)+S(бок. пов.) = 16²см²+2·17·16 см² = 32·(8+17)см² = 8·4·25см²=800см².
ответ: 800см².