Возьмем точки А и В так, чтобы XKNA и XLMB были параллелограммами и продлим XY за точку Y на свою длину до точки С (см. рис). Треугольник ANY равен треугольнику BMY по двум сторонам и углу между ними (AN=XK=XL=BM, NY=MY и ∠ANY=∠BMY как внутренние накрест лежащие, т.к. АN||KL||MB и MN - секущая). Значит AY=BY, т.е. AXBC - параллелограмм. Тогда ∠KVX=∠AXY=∠XCB, ∠LWX=∠BXC, BC=XA=KN и BX=LM, а т.к. по условию LM<KN, то BX<BС. Т.к. в любом треугольнике (в том числе XCB) напротив меньшей стороны лежит меньший угол, то ∠XCB<∠BXC, а значит и ∠KVX<∠LWX.
1. Луч-часть прямой, состоящая из данной точки и всех точек, лежащих по одну сторону от неё.(есть начало, нет конца). 2. Угол-часть плоскости между двумя линиями, исходящими из одной точки. 3. Снежный угол- называются два прилежащих угла, несовпадающие стороны которых образуют прямую. Вертикальные углы — пара углов, у которых вершина общая, а стороны одного угла составляют продолжение сторон другого угла 4. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
2. Угол-часть плоскости между двумя линиями, исходящими из одной точки.
3. Снежный угол- называются два прилежащих угла, несовпадающие стороны которых образуют прямую. Вертикальные углы — пара углов, у которых вершина общая, а стороны одного угла составляют продолжение сторон другого угла
4. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.