Хэлп нужно расписывать)
Дан треугольник АВС с вершинами А (11; -2;- 9) , В(2;6;-4), С (8;-6;-8)
а) найдите координаты середины отрезка ВС,
б) найдите координаты и модуль вектора ВС,
в) найдите вектор АВ + BC,
г) докажите перпендикулярность векторов AB и AC.
Если из точки, лежащей вне окружности, проведены касательная и
секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть.
По этой теореме АВ²=АС:АК
144=18*АК
АК=144:18=8⇒
СК=18 - 8=10
Соединим центр окружности с С и К.
∆ СОК - равнобедренный (боковые стороны - радиусы).
Расстояние от точки до прямой - перпендикуляр.
ОН⊥СК⇒ ОН - высота и медиана равнобедренного ∆ СОК.
СН=КН=8:2=4
По т. Пифагора ОК=√(ОН²+КН²)=5 см
1. Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
2. Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.
3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
4. Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.