Отрезки касательных, проведённые из одной точки, равны, значит, одна боковая сторона равна 2+32 = 34, вторая равна ей, меньшее основание равно 2+2 = 4, большее равно 32+32 = 64. Проводим две высоты к большему основанию, а также диаметр, перпендикулярный к основанию. Высоты и перпендикуляр параллельны, кроме того, отрезки высот отсекают на большем основании три отрезка, два из которых соответственно равны, а третий равен меньшему основанию, т.е. равен 4. Значит, равные отрезки, на которые делят высоты большее основание равны 1/2*(64-4) = 30. Далее по теореме Пифагора находим высоту, т.е. катет прямоугольного треугольника, который равен √(34²-30²) = √(1156-900) = √256 = 16.
Прямые симметричны относительно ОС, поскольку усеченные круговые сегменты (один из них - СЕВ, ограничен дугой СВ) равны по площади, и оба равны четверти круга с вырезанным прямоугольным треугольником (справа это ОСЕ), следовательно, прямоугольные треугольники равны по площади, один катет у них общий, => они равны. Это - очевидно, но надо было это отметить.
Осталось понять, что 2*Scoe = Sceb = Socb - Scoe; :)
См. чертеж.
Прямые симметричны относительно ОС, поскольку усеченные круговые сегменты (один из них - СЕВ, ограничен дугой СВ) равны по площади, и оба равны четверти круга с вырезанным прямоугольным треугольником (справа это ОСЕ), следовательно, прямоугольные треугольники равны по площади, один катет у них общий, => они равны. Это - очевидно, но надо было это отметить.
Осталось понять, что 2*Scoe = Sceb = Socb - Scoe; :)
3*R*a/2 = pi*R^2/4;
ОЕ = а = pi*R/6; BE = R - a = R*(1 - pi/6);
Две прямые поделят диаметр на три отрезка
R*(1 - pi/6); pi*R/3; R*(1 - pi/6); ну, отсюда пропорция
(1 - pi/6) : (pi/3) : (1 - pi/6)