Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники. Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=4). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO=7 - это высота пирамиды. Проведем апофему пирамиды SK - это высота боковой грани. Из прямоугольного ΔSKО: SК=√(КО²+SО²)=√((4/2)²+7²)=√53 Площадь основания Sосн=АВ²=4²=16 Периметр основания Р=4АВ=4*4=16 Площадь боковой поверхности Sбок=P*SK/2=16*√53/2=8√53 Площадь полной поверхности Sполн=Sбок+Sосн=8√53+16
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=4). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO=7 - это высота пирамиды.
Проведем апофему пирамиды SK - это высота боковой грани.
Из прямоугольного ΔSKО:
SК=√(КО²+SО²)=√((4/2)²+7²)=√53
Площадь основания Sосн=АВ²=4²=16
Периметр основания Р=4АВ=4*4=16
Площадь боковой поверхности
Sбок=P*SK/2=16*√53/2=8√53
Площадь полной поверхности
Sполн=Sбок+Sосн=8√53+16
1-ая задача:
в цилиндре проведена плоскость , параллельна оси и отсекающая от окружности основания дугу 90 градусов
значит в поперечном сечении образуется ПРЯМОУГОЛНИЫЙ равнобедренный треугольник
-угол при оси цилиндра 90 град
-углы при основнии 45 град
-боковые стороны - катеты, равные радису цилиндра a=b=R
-высота h=4 равна расстоянию до оси цилиндра
тогда радиус R=h/sin45=4 / (√2/2)=4√2
длина окружности основания L=2R*pi = 2*4√2*pi=8√2*pi
длина основния треугольника(гипотенуза) c=R√2=4√2*√2=8
Диагональ сечения равна d=10
высота цилиндра (H) по теореме Пифагора
H^2=d^2 - с^2 = 10^2 -8^2 =100-64=36 <--- H=6
площадь боковой поверхности цилиндра.Sбок = L*H=8√2*pi*6=48√2*pi
ОТВЕТ
48√2*pi
или
pi*48√2
или
48pi√2