Если все двугранные углы при основании равны 60°, то проекция высоты боковой грани на основание - это радиус вписанной в основание окружности, равный половине высоты h ромба.
h = a*sin30° = 20*(1/2) = 10 см, тогда h/2 = 10/2 = 5 см.
Находим высоту боковой грани:
hгр = (h/2)/cos 60° = 5/(1/2) = 10 см.
Sбок = (1/2)*Р*hгр = (1/2)*(4*20)*10 = 400 см²
Высота пирамиды равна:
H = (h/2)*tg 60° = 5√3 см.
как я понял но не знаю правильный ли этот ответ если неправильный то поправьте.
п равильная четырехугольная призма - это многогранник, основания которого являются правильными четырехугольниками - квадратами, а боковые грани — равными прямоугольниками.
так как сторона квадрата ( верхнего основания призмы) противолежит углу 30 градусов, она равна половине диагонали призмы и равна 5 см. нужно теперь найти высоту призмы. для этого придется найти диагональ боковой грани из треугольника, гипотенузой в котором является диагональ призмы, а катетами сторона квадрата и диагональ боковой грани. она равна √(100 -25)= √75 =5√3теперь находим высоту призмыh² =(5√3)² -5² =√50=5√2площадь полной поверхности призмы равна площади ее четырех боковых граней плюс площадь оснований. площадь боковых граней равна4*5*5√2=100√2площадь оснований 2*5*5=50 см²
площадь полной поверхности призмы100√2 +50=50(2√2+1) см
Высота пирамиды равна:
H = (h/2)*tg 60° = 5√3 см.
Объяснение:
Если все двугранные углы при основании равны 60°, то проекция высоты боковой грани на основание - это радиус вписанной в основание окружности, равный половине высоты h ромба.
h = a*sin30° = 20*(1/2) = 10 см, тогда h/2 = 10/2 = 5 см.
Находим высоту боковой грани:
hгр = (h/2)/cos 60° = 5/(1/2) = 10 см.
Sбок = (1/2)*Р*hгр = (1/2)*(4*20)*10 = 400 см²
Высота пирамиды равна:
H = (h/2)*tg 60° = 5√3 см.
как я понял но не знаю правильный ли этот ответ если неправильный то поправьте.
п равильная четырехугольная призма - это многогранник, основания которого являются правильными четырехугольниками - квадратами, а боковые грани — равными прямоугольниками.
так как сторона квадрата ( верхнего основания призмы) противолежит углу 30 градусов, она равна половине диагонали призмы и равна 5 см. нужно теперь найти высоту призмы. для этого придется найти диагональ боковой грани из треугольника, гипотенузой в котором является диагональ призмы, а катетами сторона квадрата и диагональ боковой грани. она равна √(100 -25)= √75 =5√3теперь находим высоту призмыh² =(5√3)² -5² =√50=5√2площадь полной поверхности призмы равна площади ее четырех боковых граней плюс площадь оснований. площадь боковых граней равна4*5*5√2=100√2площадь оснований 2*5*5=50 см²
площадь полной поверхности призмы100√2 +50=50(2√2+1) см