1) Пусть АС=х. По условию задачи, тр. АВС-равнобедренный,то боковые стороны равны: АВ=ВС. Также по условию АВ=2АС (но АС=х),следовательно АВ=ВС=2х. Периметр-сумма длинн всех сторон треугольника АВС( Р=АВ+ВС+АС), получаем уравнение Р=2х+2х+х, но по условию Р=20,тогда имеем: 20=2х+2х+х 20=5х 5х=20 х=20/5 х=4. За х мы брали сторону АС,то есть АС=4; АВ=ВС=2х=2*4=8. ответ(1): 4,8,8. 2) АД-медиана тр.АВС. Медиана-это отрезок,соединяющий вершину треугольника,с серединой противоположной стороны, тое сть получим,что медиана АД разделит сторону ВС на два равных отрезка: ВД=ДС. Нам известно,что ВС=8, тогда ВД=ДС=8/2=4. Рассмотрим тр. АДС. АС=4, ДС=4. Если две боковые стороны треугольника равны,то этот треугольник-равнобедренный. Следовательно: тр.АДС, по внешнему виду будет равнобедренным. ответ(2):равнобедренный
1) На произвольной прямой отложить отрезок, равный длине периметра. Обозначить его АК.
2) От т.А циркулем отметить на АК точку С, АС= длине данного основания.
3). Отрезок СК разделить на две равные части. Для этого из т.С и т.В провести две полуокружности до их пересечения по обе стороны от СК. Точки пересечения соединить прямой ( срединным перпендикуляром). Точку пересечения этой прямой и отрезка СК обозначить М. СМ=МК=длина боковой стороны треугольника.
4). Циркулем с раствором, равным МК, провести из точек А и С дуги до их пересечения. Точку пересечения обозначить В и соединить с т.А и т.С. Треугольник АВС - искомый.
20=2х+2х+х
20=5х
5х=20
х=20/5
х=4.
За х мы брали сторону АС,то есть АС=4; АВ=ВС=2х=2*4=8.
ответ(1): 4,8,8.
2) АД-медиана тр.АВС. Медиана-это отрезок,соединяющий вершину треугольника,с серединой противоположной стороны, тое сть получим,что медиана АД разделит сторону ВС на два равных отрезка: ВД=ДС. Нам известно,что ВС=8, тогда ВД=ДС=8/2=4. Рассмотрим тр. АДС. АС=4, ДС=4. Если две боковые стороны треугольника равны,то этот треугольник-равнобедренный. Следовательно: тр.АДС, по внешнему виду будет равнобедренным.
ответ(2):равнобедренный
Объяснение:
1) На произвольной прямой отложить отрезок, равный длине периметра. Обозначить его АК.
2) От т.А циркулем отметить на АК точку С, АС= длине данного основания.
3). Отрезок СК разделить на две равные части. Для этого из т.С и т.В провести две полуокружности до их пересечения по обе стороны от СК. Точки пересечения соединить прямой ( срединным перпендикуляром). Точку пересечения этой прямой и отрезка СК обозначить М. СМ=МК=длина боковой стороны треугольника.
4). Циркулем с раствором, равным МК, провести из точек А и С дуги до их пересечения. Точку пересечения обозначить В и соединить с т.А и т.С. Треугольник АВС - искомый.