12 см если точка А лежит между точками С и В.
3 см если точка С лежит между точками А и В.
Объяснение:
Точки на прямой можно расположить в двух вариантах:
Первый: точка А лежит между точками С и В.
___С_4,5/_ 4,5А___7,5/___7,5В___
9 см 15 см
Тогда расстояние между серединами отрезков АВ и АС равно:
15:2 + 9:2 = 7,5 + 4,5 = 12 см.
Второй: точка С лежит между точками А и В.
АВ = 15 см
I7,5I - 7.5 см половина отрезка АВ
__А___4,5/I__СВ__
АС= 9 см
15:2 - 9:2 = 7,5 - 4,5 = 3 см.
α-тупой угол, диагональ АС разбивает параллелограмм на два равных треугольника, в треугольнике АВС есть три угла α;β; (180-(α+β)); sin(180-(α+β))=sin(α+β)=sinα*cosβ+sinβ*cosα
cosβ=√(1-sin²β)=√(1-64/289)=√(225/289)=15/17;
cosα=-√(1-sin²α)=-√(1-144/169)=-√(25/169)=-5/13;
sin(α+β)=(12/13)*(5/17)-(8/17)*(5/13)=(60-40)/(17*13)=20/(17*13);
По следствию из теоремы синусов АС/sin(180-(α+β))=BC/sinα=AB/sinβ;
5/(20/17*13)= BC/sinα; BC=5*17*13*12/(13*20)=51
5/(20/17*13)=AB/sinβ; АВ=5*17*13*8/(17*20)=26
Значит, площадь равна АВ*АС*sin(α+β)=51*26*(20/17*13)=120
ответ 120,00
Посмотрел на задание, которое Вам предложили в качестве решения в комментариях. Проверил. ответ тот же. )
12 см если точка А лежит между точками С и В.
3 см если точка С лежит между точками А и В.
Объяснение:
Точки на прямой можно расположить в двух вариантах:
Первый: точка А лежит между точками С и В.
___С_4,5/_ 4,5А___7,5/___7,5В___
9 см 15 см
Тогда расстояние между серединами отрезков АВ и АС равно:
15:2 + 9:2 = 7,5 + 4,5 = 12 см.
Второй: точка С лежит между точками А и В.
Тогда расстояние между серединами отрезков АВ и АС равно:
АВ = 15 см
I7,5I - 7.5 см половина отрезка АВ
__А___4,5/I__СВ__
АС= 9 см
15:2 - 9:2 = 7,5 - 4,5 = 3 см.
α-тупой угол, диагональ АС разбивает параллелограмм на два равных треугольника, в треугольнике АВС есть три угла α;β; (180-(α+β)); sin(180-(α+β))=sin(α+β)=sinα*cosβ+sinβ*cosα
cosβ=√(1-sin²β)=√(1-64/289)=√(225/289)=15/17;
cosα=-√(1-sin²α)=-√(1-144/169)=-√(25/169)=-5/13;
sin(α+β)=(12/13)*(5/17)-(8/17)*(5/13)=(60-40)/(17*13)=20/(17*13);
По следствию из теоремы синусов АС/sin(180-(α+β))=BC/sinα=AB/sinβ;
5/(20/17*13)= BC/sinα; BC=5*17*13*12/(13*20)=51
5/(20/17*13)=AB/sinβ; АВ=5*17*13*8/(17*20)=26
Значит, площадь равна АВ*АС*sin(α+β)=51*26*(20/17*13)=120
ответ 120,00
Посмотрел на задание, которое Вам предложили в качестве решения в комментариях. Проверил. ответ тот же. )