Рисуешь ромб АВСД, АС -20см. угол в равен углу д и равен 60 градусам. теперь решение : 1)рассмотрим треугольник овс, тк вд- диагональ то угол овс -30градусов, угол вос - 90градусов , всо - 60 градусов 2) анологично рассматриваешь треугольник аов, углы те же самые 3) тк угол вао равен 60 градусов, угол всо равен тоже 60 гр, угол авс равен 60 гр отсюда следует что треугольники авс и асд равны и они равносторонние , отсюда следует диагональ равна стороне, короче периметр равен 20умножить на 4 и равно 80 Удачи :)
ответ: 28, 19,8
Объяснение:
1. Катет, лежащий напротив угла в 30 градусов равен половине гипотенузы. Следовательно, гипотенуза DE=DF*2=14*2=28 см
2. Угол А= 90- угол В=90-60=30. Катет, лежащий против угла в 30 градусов равен половине гипотенузы. ВС=38/2=19 см
3. ΔКРЕ: ∠Р = 90°, ∠К = 60°, ⇒ ∠Е = 30°.
ΔРКМ: ∠КРМ = 90°, ∠КМР = 60°, ⇒ ∠МКР = 30°.
∠PKM = 30°.
∠РКЕ = 60°,
∠EKM = ∠РКЕ - ∠1 = 60° - 30° = 30°.
Тогда треугольник КМЕ равнобедренный (∠PEK = ∠EKM = 30°),
КМ = МЕ = 16 см
В прямоугольном треугольнике РКМ напротив угла в 30° лежит катет, равный половине гипотенузы, т.е.
РМ = 1/2 КМ = 8 см
1)рассмотрим треугольник овс, тк вд- диагональ то угол овс -30градусов, угол вос - 90градусов , всо - 60 градусов
2) анологично рассматриваешь треугольник аов, углы те же самые
3) тк угол вао равен 60 градусов, угол всо равен тоже 60 гр, угол авс равен 60 гр отсюда следует что треугольники авс и асд равны и они равносторонние , отсюда следует диагональ равна стороне, короче периметр равен 20умножить на 4 и равно 80
Удачи :)