Четырёхугольник можно вписать в окружность в том случае, если сумма противолежащих углов четырёхугольника равна 180 градусов. По условию четырёхугольник вписан в окружность. Значит и сумма противоположных углов равна 180. Отсюда имеем:
115 + х = 180 , > х = 180 - 115 = 65 градусов.
63 + х = 180, > х = 180 - 63 = 117 градусов.
Следовательно, градусные меры остальных углов 4-угольника соответственно равны 65 и 117 градусов. Кроме того, в сумме градусные меры 4 углов 4-угольника дают 360 градусов, что говорит об истинности решения.
В треугольник с основание а и высотой с вписан квадрат,причем две вершины квадрата лежат на основании треугольника,а две другие- на его боковых сторонах.Найдите сторону квадрата.
Из подобия треугольников, имеющих параллельные стороны и равные углы, вытекает пропорция, где в -сторона квадрата, с - высота (в условии h)
Четырёхугольник можно вписать в окружность в том случае, если сумма противолежащих углов четырёхугольника равна 180 градусов. По условию четырёхугольник вписан в окружность. Значит и сумма противоположных углов равна 180. Отсюда имеем:
115 + х = 180 , > х = 180 - 115 = 65 градусов.
63 + х = 180, > х = 180 - 63 = 117 градусов.
Следовательно, градусные меры остальных углов 4-угольника соответственно равны 65 и 117 градусов. Кроме того, в сумме градусные меры 4 углов 4-угольника дают 360 градусов, что говорит об истинности решения.
ответ: 65 и 117
В треугольник с основание а и высотой с вписан квадрат,причем две вершины квадрата лежат на основании треугольника,а две другие- на его боковых сторонах.Найдите сторону квадрата.
Из подобия треугольников, имеющих параллельные стороны и равные углы, вытекает пропорция, где в -сторона квадрата, с - высота (в условии h)
(с-в)/(в/2) = в / ((а-в)/2) =( 2*(с-в)) / в = (2*в) / (а-в) = ас-ав-св+b^2 = b^2 = -b(a+c)+ac = 0.
Отсюда в = ас/(а+с)