И можете с чертежом.
1. Сумма двух углов, которые получаются при пересечении двух прямых, равна 50. Найдите эти углы.
2. В равнобедренном треугольнике АВС с основанием АС проведена медиана ВМ. На ней взята точка О. Докажите равенство треугольников АВО и СВО.
3. В равнобедренном треугольнике АВС с основанием АС проведена биссектриса СК. Найдите углы треугольника АВС, если угол АКС = 60о.
4. В прямоугольном треугольнике АВС катет АВ равен 3 см, угол С равен 15о. На катете АС отмечена точка D так, что угол СBD равен 15о.
а) найдите длину отрезка BD.
б) Докажите, что ВС < 12 см
+ еще дам кто правильно ответит
и α = β = γ = 60°
Кроме того, в равностороннем треугольнике биссектриса
каждого угла является одновременно медианой и высотой.
Так как h - высота, то образовавшиеся 2 треугольника
являются прямоугольными.
В этих треугольниках: катеты h и а/2 и гипотенуза а.
Тогда: h² + (a/2)² = a²
h = √(3a²/4)
h = (a√3)/2 => 12√3 = (a√3)/2
a√3 = 24√3
a = 24
ответ: 24
2. Циркулем откладываем на этой прямой 3 равных отрезка так, чтобы они в сумме были длиннее, чем исходный отрезок. Получаем точки B, C, D, E, причем [BC]=[CD]=[DE], как радиусы окружностей, и [BE] > [KN]
3. Через начало первого отрезка и через конец последнего проводим 2 прямые, соединяющие эти точки с началом и концом данного отрезка. - Прямые (BK) и (EN)
4 Так как новый отрезок длиннее, чем данный, то эти прямые пересекутся в некоторой точке А. Таким образом, получится треугольник ABE с вершиной в точке А. Из этой точки строим 2 луча, пересекающие прямую а в точках C и D, которые мы отметили циркулем. Тогда на данном отрезке получатся 2 точки F и S, которые разобьют его на 3 равные части. То есть [KF]=[FS]=[SN]= 1/3[KN]