В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
polli11092002
polli11092002
04.11.2021 20:45 •  Геометрия

И Р Построение перпендикулярных прямых Задача Даны прямая и точка на ней, построить прямую, проходящую через данную точку и пер- пендикулярную к данной прямой, Решение Данная прямая а и данная точка M, принад- лежащая этой прямой, изображены на рисунке 87, На лучах прямой а, исходящих из точки M, отложим равные отрезки MA и MB, Затем построим две окружности с центрами А и В ради- уса AB, Они пересекаются в двух точках: Рио. Проведём прямую через точку ми одну из этих точек, например прямую MP (см. рис. 87), и докажем, что эта прямая искомая, т. е. Что она перпендикулярна к данной прямой а, В самом деле, так как медиана РМ равно- бедренного треугольника PAB является также высотой, то РМ Іa, Рис. 27

Показать ответ
Ответ:
irochkakarpenkp0bint
irochkakarpenkp0bint
09.06.2022 22:52

что бы найти площадь равнобедренного треугольника нужна высота. s=ah/2

чертим высоту вн. а высота в равнобедренном треугольнике является медианой и высотой, и делит основание на 2 равные части. значит ан=нс=24: 2=12

нам нужной найти высоту вн

вн можно найти по теореме пифагора, ведь треугольник авн прямоугольный т.к вн является ещё и высотой

вн= корень из ав ²-ан²

вн=корень из 144-169=25 корень из 25 =5

площадь треугольника равна ан/2

а=ан

н=вн

s=5*12/2=30 это площадь треугольника авн а треугольник внс ему равен по 3-м сторонам.

1)ав=вс=13

2)ан=сн=12

3)вн- общая =>

треугольник равны, значит и площади их равны. а площадь треугольника авс=авн+внс

авс=60

ответ : 60 см²

0,0(0 оценок)
Ответ:
явселеная
явселеная
10.01.2020 07:22

асательная прямая  t  к окружности  c  пересекает  окружность в единственной точке  t. для сравнения,  секущие прямые  пересекают окружность в двух точках, в то время как некоторые прямые могут не пересекать окружность совсем. это свойство касательной прямой сохраняется при многих   преобразованиях[en], таких как  подобие,  вращение,  параллельный перенос,  инверсия  и  картографическая проекция. говоря техническим языком, эти преобразования не меняют  структуру инцидентности  касательных прямых и окружностей, даже если сами прямые и окружности деформируются.

радиус окружности, проведённый через точку касания, перпендикулярен касательной прямой. и обратно, перпендикуляр к радиусу в конечной точке (на окружности) является касательной прямой. окружность вместе с касательной прямой имеют  осевую симметрию  относительно радиуса (к точке касания).

по  теореме о степени точкипроизведение длин pm•pn для любого луча pmn равно квадрату pt, длине отрезка от точки p до точки касания (отрезок показан красным цветом).

никакая касательная прямая не может проходить через точку внутри окружности, поскольку любая такая прямая должна быть секущей. в то же время для любой точки, лежащей вне круга, можно построить две проходящие через неё касательные прямые. фигура, состоящая из окружности и двух касательных прямых, также обладает осевой симметрией относительно прямой, соединяющей точку  p  с центром окружности  o  (см. рисунок справа). в этом случае отрезки от точки  p  до двух точек касания имеют одинаковую длину. по  теореме о степени точки  квадрат длины отрезка до точки касания равен степени точки p относительно окружности  c. эта степень равна произведению расстояний от точки  p  до двух точек пересечения окружности любой секущей линией, проходящей через  p.

угол θ между хордой и касательной равен половине дуги, заключённой между концами хорды.

касательная прямая  t  и точка касания  t  свойством сопряжённости друг другу; это соответствие можно обобщить в идею о  полюсе и поляре. такая же взаимосвязь существует между точкой  p  вне окружности и секущей линией, соединяющей две точки касания.

если точка p лежит вне окружности с центром o, и если касательные прямые из p касаются окружности в точках t и s, то углы ∠tps и ∠tos в сумме 180°.

если  хорда  tm проведена из точки касания t прямой p t и ∠ptm ≤ 90°, то ∠ptm = (1/2)∠mot.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота