Треугольник в основании имеет стороны (6, 25, 29). Его можно представить, как разность двух Пифагоровых треугольников - со сторонами (20, 21, 29) и (15, 20, 25).
Делается это так - на катете 21 треугольника (20, 21, 29) от вершины прямого угла откладывается 15 и соединяется с вершиной противоположного острого угла.
Этот "трюк" нужен для того, чтобы устно вычислить высоту (к стороне 6) и площадь треугольника (6, 25, 29). Высота равна 20, а площадь 60.
(Конечно, все это можно сделать "стандартными методами", то есть сообразить, что между сторонами 6 и 25 - тупой угол, продлить сторону 6 за вершину тупого угла, и опустить перпендикуляр из противоположной вершины. Затем записать теорему Пифагора для получившихся треугольников и решить её - как раз и получим ответ 20.
А можно - если совсем жалко мозги тратить - сосчитать площадь по формуле Герона. Получим 60 - можете проверить :)
Все эти методы - правильные, но у моего "неправильного" есть одно преимущество - ответ в одну секунду сам собой получается без всяких вычислений. Вернусь к задаче.)
Пусть высота призмы (боковое ребро) равно х. Тогда по условию
Для АВ. прямая проходит через точки А и В, ее уравнение 5х - 3у - 3 = 0
Для АС. прямая проходит через точки А и С. ее уравнение х + 3у + 3 = 0
Для ВС. прмяая проходит через точки В и С, ее уравнение 7х + 3у - 33 = 0
Медиана ВМ проходит через точку В и середину отрезка АС. Найдем координаты середины отрезка АС.
х = (6 + 0)/2 = 3 у = (-3-1)/2 = -2
Таким образом, медиана ВМ проходит через точки В(3;4) и (3;-2), и ее уравнение х = 3 (она параллельна оси ординат).
Высота BD образует прямой угол с прямой АС, уравнение которой х + 3у + 3 = 0. Условие перпендикулярности прямых - произведение их угловых коэффициентов равно -1.
АС имеет угловой коэффициент, равный - 1/3. Следовательно, угловой коэффициент искомой прямой - высоты BD - будет равен 3. Значит, уравнение высоты имеет вид:
3х - у - 5 = 0.
Найдем косинус А. Этот угол лежит между прямыми АВ = корень из 34 и АС = корень из 40. По теореме косинусов находим косинус А: он равен 2/(корень из 35)
Центр тяжести треугольника - точка пересечения его медиан. Можно отыскать, применяя дфойное интегрирование, а можно (что полегче) геометрическим
Треугольник в основании имеет стороны (6, 25, 29). Его можно представить, как разность двух Пифагоровых треугольников - со сторонами (20, 21, 29) и (15, 20, 25).
Делается это так - на катете 21 треугольника (20, 21, 29) от вершины прямого угла откладывается 15 и соединяется с вершиной противоположного острого угла.
Этот "трюк" нужен для того, чтобы устно вычислить высоту (к стороне 6) и площадь треугольника (6, 25, 29). Высота равна 20, а площадь 60.
(Конечно, все это можно сделать "стандартными методами", то есть сообразить, что между сторонами 6 и 25 - тупой угол, продлить сторону 6 за вершину тупого угла, и опустить перпендикуляр из противоположной вершины. Затем записать теорему Пифагора для получившихся треугольников и решить её - как раз и получим ответ 20.
А можно - если совсем жалко мозги тратить - сосчитать площадь по формуле Герона. Получим 60 - можете проверить :)
Все эти методы - правильные, но у моего "неправильного" есть одно преимущество - ответ в одну секунду сам собой получается без всяких вычислений. Вернусь к задаче.)
Пусть высота призмы (боковое ребро) равно х. Тогда по условию
х*(6 + 25 + 29) + 2*60 = 1560; х = 24;
Объем 60*24 = 1440;
Объяснение:
Вначале найдём уравнения сторон.
Для АВ. прямая проходит через точки А и В, ее уравнение 5х - 3у - 3 = 0
Для АС. прямая проходит через точки А и С. ее уравнение х + 3у + 3 = 0
Для ВС. прмяая проходит через точки В и С, ее уравнение 7х + 3у - 33 = 0
Медиана ВМ проходит через точку В и середину отрезка АС. Найдем координаты середины отрезка АС.
х = (6 + 0)/2 = 3 у = (-3-1)/2 = -2
Таким образом, медиана ВМ проходит через точки В(3;4) и (3;-2), и ее уравнение х = 3 (она параллельна оси ординат).
Высота BD образует прямой угол с прямой АС, уравнение которой х + 3у + 3 = 0. Условие перпендикулярности прямых - произведение их угловых коэффициентов равно -1.
АС имеет угловой коэффициент, равный - 1/3. Следовательно, угловой коэффициент искомой прямой - высоты BD - будет равен 3. Значит, уравнение высоты имеет вид:
3х - у - 5 = 0.
Найдем косинус А. Этот угол лежит между прямыми АВ = корень из 34 и АС = корень из 40. По теореме косинусов находим косинус А: он равен 2/(корень из 35)
Центр тяжести треугольника - точка пересечения его медиан. Можно отыскать, применяя дфойное интегрирование, а можно (что полегче) геометрическим