На рисунке подобные треугольники. Они подобны по второму признаку (Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.)
Из пропорциональности сторон можно легко вычислить коэффициент подобия:
9/3 = 3
Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Т.е. площадь большого треугольника в 3² = 9 раз больше площади маленького. Соответственно она равна:
Одна из формул площади параллелограмма Ѕ=a•h. Очевидно, что при одинаковой площади большей будет высота, проведенная к меньшей стороне, и наоборот. Следовательно, искомой будет высота к стороне АВ ( или равной ей CD).
На рисунке в приложении высота к меньшей стороне АВ пересекается с ее продолжением. Из прямоугольного треугольника AKD высота DK=AD•sinA=6•1/3=2 (ед. длины)
Как вариант можно найти большую высоту иначе. Сначала найти длину меньшей высоты ВН=АВ•sinA, затем найти площадь S=ВН•AD и высоту DK=S:AB.
36 см²
Объяснение:
На рисунке подобные треугольники. Они подобны по второму признаку (Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.)
Из пропорциональности сторон можно легко вычислить коэффициент подобия:
9/3 = 3
Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Т.е. площадь большого треугольника в 3² = 9 раз больше площади маленького. Соответственно она равна:
S = 4 * 9 = 36 см²
Одна из формул площади параллелограмма Ѕ=a•h. Очевидно, что при одинаковой площади большей будет высота, проведенная к меньшей стороне, и наоборот. Следовательно, искомой будет высота к стороне АВ ( или равной ей CD).
На рисунке в приложении высота к меньшей стороне АВ пересекается с ее продолжением. Из прямоугольного треугольника AKD высота DK=AD•sinA=6•1/3=2 (ед. длины)
Как вариант можно найти большую высоту иначе. Сначала найти длину меньшей высоты ВН=АВ•sinA, затем найти площадь S=ВН•AD и высоту DK=S:AB.