Уравнение прямой: y=kx+b. k - угловой коэффициент, если у прямых совпадают угловые коэффициенты, значит они параллельны. Следовательно у нашей прямой такое уравнение: y=3x+b. Нам осталось найти b, и дело в шляпе! Подставим заместо х и у координаты точки, через которую проходит наша прямая, так как точка принадлежит прямой, ее координаты должны удовлетворять уравнению нашей прямой, а затем решим уравнение относительно b: 2 = 3*(-2) + b; b = 2 + 6 = 8. Итак, мы узнали b. Теперь мы можем записать окончательное уравнение нашей прямой: у = 3х + 8.
Определить боковую сторону равнобедренного треугольника , если синус угла(острого) при вершине равен 0,96, а радиус описанной около него окружности равен 12,5 см.
y=kx+b.
k - угловой коэффициент, если у прямых совпадают угловые коэффициенты, значит они параллельны. Следовательно у нашей прямой такое уравнение:
y=3x+b.
Нам осталось найти b, и дело в шляпе!
Подставим заместо х и у координаты точки, через которую проходит наша прямая, так как точка принадлежит прямой, ее координаты должны удовлетворять уравнению нашей прямой, а затем решим уравнение относительно b:
2 = 3*(-2) + b;
b = 2 + 6 = 8.
Итак, мы узнали b. Теперь мы можем записать окончательное уравнение нашей прямой:
у = 3х + 8.
Определить боковую сторону равнобедренного треугольника , если синус угла(острого) при вершине равен 0,96, а радиус описанной около него окружности равен 12,5 см.
ответ: 20 см
Объяснение:
Обозначим данный треугольник АВС; АВ=ВС=х.
1)
По т.синусов найдем длину основания.
2R=AC/sin(ABC)
25=AC/0,96=>
AC=24 (см)
2)
a) Найдем косинус угла АВС:
cos²(ABC)=1-sin²(ABC)=0,0784 =>
cos(ABC)=0,28
б) По т.косинусов найдем длину боковой стороны.
АС²=АВ²+ВС²-2АВ•ВС•cos(ABC)
576=х²+х²-2х²•0,28
576=1,44х²
х²=400
х=√400=20(см)