Объяснение:
1) равновеликий значит, что площади равные. S = 8 × 20 и в то же время S = a × 16
8 × 20 = a × 16
a = 10
2)d1 = 8^2 + 20^2 = 464
d2 = 10^2 + 16^2 = 356
Нет
3)треугольник АНВ прямоугольный с А = 45 градусов, значит АНВ ещё и равнобедренный, то есть АН = НВ = 6
АС = 15
S = 1/2 × 15 ×6 = 45
4)P = 2x + 14 + 26 = 60. Отсюда 2x = 20, x = 10
боковая сторона равна 10.
S = полусумма оснований умноженая на высоту
высоту найдём из прямоугольного треугольника
h = 100 - 36 = корень из 64 = 8
S = (14 + 26)/2 × 8 = 160
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
Объяснение:
1) равновеликий значит, что площади равные. S = 8 × 20 и в то же время S = a × 16
8 × 20 = a × 16
a = 10
2)d1 = 8^2 + 20^2 = 464
d2 = 10^2 + 16^2 = 356
Нет
3)треугольник АНВ прямоугольный с А = 45 градусов, значит АНВ ещё и равнобедренный, то есть АН = НВ = 6
АС = 15
S = 1/2 × 15 ×6 = 45
4)P = 2x + 14 + 26 = 60. Отсюда 2x = 20, x = 10
боковая сторона равна 10.
S = полусумма оснований умноженая на высоту
высоту найдём из прямоугольного треугольника
h = 100 - 36 = корень из 64 = 8
S = (14 + 26)/2 × 8 = 160
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.