Имеются две параллельные плоскости. в одной плоскости лежит прямая а,в другой прямые кт и км.расстояние между прямой а и ктравно 5 см. расстояние между прямой а и прямой км - 8 см. найти расположение прямой а и кт,а также прямой а и км
бічна сторона рівнобедреного трикутника дорівнює 17см, а висота проведена до основи - 8см. Получим треугольник прямоугольный с катетом 8 см, а гипотенузой 17 см.(получается два равных треугольника, будем рассматривать один из них). По теореме Пифагора найдем второй катет: 17²-8²=289-64=225=15².
Отметим угол при основании α, Противолежащим катетом углу α будет
катет 8см, а прилежащим к углу α катетом будет катет 15 см, гипотенуза 17 см. по определению тригонометрических функций :
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
sin α= 8/17
cos α=15/17
tg α=8/15
ctg α=15/8
Объяснение:
бічна сторона рівнобедреного трикутника дорівнює 17см, а висота проведена до основи - 8см. Получим треугольник прямоугольный с катетом 8 см, а гипотенузой 17 см.(получается два равных треугольника, будем рассматривать один из них). По теореме Пифагора найдем второй катет: 17²-8²=289-64=225=15².
Отметим угол при основании α, Противолежащим катетом углу α будет
катет 8см, а прилежащим к углу α катетом будет катет 15 см, гипотенуза 17 см. по определению тригонометрических функций :
sin α= 8/17
cos α=15/17
tg α=8/15
ctg α=15/8
Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.