Высота правильной пирамиды проецируется точно в центр основания, которым в данном случае является правильный треугольник. Высота, боковое ребро и отрезок, соедияющий центр основания с его вершиной, образуют прямоугольный треугольник, в котором боковое ребро является гипотенузой, и ее можно найти, используя теорему Пифагора. Но нам неизвестен катет - тот самый отрезок между центром и вершиной основания. Обратим вниание, что этот отрезок является радиусом окружности, описанной вокруг основания-треугольника. Радиус описанной окружности можно вычислить по формуле: R = a(3^0,5)/3, где а - сторона треугольника, (3^0,5) - корень из трех. В нашем случае радиус равен: R = 6(3^0,5)(3^0,5)/3 = 63/3 = 6. Боковая грань равна: (3^2 + 6^2)^0,5 = (9 + 36)^0,5 = 45^0,5 = 35^0,5 (три корня из пяти). Так что задачу ты решила верно и без моей не стоило беспокоиться. :)
8. Припустим, что k i l паралельны, а m секущая. Тогда тут будут действовать теоремы о внутрених и внешних углах с секущей
Вертикальные угол, с углом 36° будет 36°
Модем видет, что здесь действует теорема о внутреннем и внешнем углах сума которых ровна 180°. По этому k||l
9. Рассмотрим треугольник АВС
АВ=СА
то есть треугольник АВС равнобедренный
с этого модем скать, что ВС основа, угол В = углу С
На рисунку 9 видим, что дано два угла и они равны
Соответственно угол С будет равен тем двом углам, так как они равны и один из рих равен углу С
Тут мы мы можем предположить, что ВС может быть секущей и тогда внутренние разносотороние куты должны будут быть равны если a||b.
Соответственно a||b