иммеются HKML и ADHL - прямоугольники, не лежащии в одной плоскости. Прямая a, параллельная KM, пересекает плоскости HKD и MLA соответственно в точках Q и N. Докажите, что ADQN - параллелограмм
1)Если периметр 12 см, то длина каждой стороны будет (12/4)=3 мм. Тупой угол 120 гр. Тогда острый=60 градусов. Диагональ ромба делит угол пополам. Значит, получим 4 равных треугольника с острым углом 30 гр. А катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Таким образом, катет будет (3/2)=1,5 мм. Второй катет по т.Пифагора можно найти. Теперь легко вычислить площадь прямоугольного треугольника (S=1/2*a*b), а площадь ромба будет равна 4 площадям треугольника. Дерзайте с вычислениями!
1)Если периметр 12 см, то длина каждой стороны будет (12/4)=3 мм.
Тупой угол 120 гр. Тогда острый=60 градусов. Диагональ ромба делит угол пополам. Значит, получим 4 равных треугольника с острым углом 30 гр. А катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Таким образом, катет будет (3/2)=1,5 мм. Второй катет по т.Пифагора можно найти.
Теперь легко вычислить площадь прямоугольного треугольника (S=1/2*a*b), а площадь ромба будет равна 4 площадям треугольника.
Дерзайте с вычислениями!
) Пусть АН - высота треугольника, она же ось симметрии.
Так как вершина А лежит на оси симметрии, она отобразится в себя (т.е. точка А' совпадет с А).
Чтобы отобразить точку В относительно оси АН, надо построить из точки В луч, перпендикулярный АН, а это и есть прямая ВС.
Затем на луче ВН откладываем отрезок НВ', равный ВН, по другую сторону от точки Н.
На луче СН по другую сторону от точки Н откладываем отрезок НС', равный СН.
ΔA'B'C' - искомый.
б) Пусть D - середина АВ.
Проводим луч CD, на котором откладываем отрезок CA' = CD.
На луче AD откладываем отрезок DA' = AD. Так как D - середина АВ, точка A' совпадет с точкой В.
На луче BD откладываем отрезок DB' = BD. Так как D - середина АВ, точка В' совпадет с точкой А.
ΔA'B'C' - искомый.
в) М - точка пересечения медиан треугольника АВС.
Из вершин А, В и С проводим лучи, параллельные АМ. На них откладываем отрезки AA', BB' и CC', равные длине отрезка АМ.
При этом точка А' совпадет с точкой М.
ΔA'B'C' - искомый.
г) Так как С - центр поворота, то точка С отобразится на себя.
Строим окружность с центром в точке С и радиусом ВС.
Строим угол, равный 45° с вершиной в точке С и стороной ВС (против часовой стрелки). Точка пересечения окружности и второй стороны угла - точка В'.
Строим окружность с центром в точке С и радиусом АС.
Строим угол, равный 45° с вершиной в точке С и стороной АС (против часовой стрелки). Точка пересечения окружности и второй стороны угла - точка А'.
ΔA'B'C' - искомый